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Abstract. We develop a theory of vertical hopping transport in doped superlattices with intentional
vertical disorder introduced by controlled random variations of well widths. For structures with
sufficiently large disorder, the vertical conductance (in the direction of the growth axis) is limited
by phonon-assisted hopping between the wells. It is shown that due to quasi-equilibrium situation
within the wells, the master rate equation for transitions between the electronic states of the structure
can be reduced to a truncated rate equation for inter-well transitions only. At low bias, the solution
of this rate equation is shown to be equivalent to finding total resistance of a quasi-one-dimensional
network of resistances expressed in terms of integral transition rates between the wells. This
network is generally different from the Miller-Abrahams network and contains multisite resistors.

Introduction

Superlattices with intentional disorder (SLIDs) in which vertical disorder (in the direction
of the growth axis) was introduced by random controlled variations of well widths in
the process of structure deposition were first discussed in [ ] and were experimentally
realized in I ]; vertical transport in such structures was studied both by optical methods, in
particular, by stationary and picosecond luminescence spectroscopy (e.g., see [ 1), and by
direct measurements of the vertical conductance [ ]. Optical experiments clearly showed
that with increasing vertical disorder, localization of electronic states in the direction of the
structure growth increases. It was argued that for small overlap of the wave functions of
neighboring wells even for superlattices without intentionally introduced disorder, vertical
transport can be due to phonon-assisted inter-well transitions (hopping) [, ]. Introduction
of intentional disorder substantially enhances localization of electronic states; for short-
period superlattices GaAs/AlAs with random fluctuations of well and barrier widths (from
I to 3 monolayers), the onset of localization was studied in [ ]. At low energies, the decay
length of the wave function can become smaller than the monolayer width so that structures
considered seem to be similar to a one-dimensional chain of localized states. For structures
with sufficiently large disorder studied in [ ], the miniband width was estimated to be
smaller than the width of the level distribution; therefore one expects that the states are
strongly localized in the vertical direction. Thus it appears that vertical transport in SLIDs
is similar to that in one-dimensional systems of localized states (sites), and SLIDs are
very promising model systems to study the effects of disorder and Coulomb interactions on
electronic states and transport. Indeed, phonon-assisted hopping for usual one-dimensional
and quasi-one-dimensional of sites was extensively studied by using the quantum transport
equation techniques and percolation theory (e.g., see [ , I); therefore, comparison of
experimental data for SLIDs with localization and transport theories might appear to be a
useful test of current theoretical concepts.

However, it recently became clear that there are essential differences between SLIDs and
standard systems of point sites. In particular, it appears that a finite extent of the "cores" of
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localized states in the vertical direction is important, giving rise to virtual-tunneling-assisted
hopping [ I - [ ]. Moreover, sites cannot be assigned to individual quantum states; one
must rather associate sites with quantum wells, which are macroscopically populated. In
this paper we discuss an approach that takes account of the specific natures of SLIDs, derive
a truncated rate equation for macroscopic sites and establish the equivalence of the problem
to that of a generalized resistance network.

1. Transport equation

As usual, in the envelope function approximation the wave functions of electronic states
in SLIDs can be written in the form VJxk, = Auj (z) exp (ikil p), where A is a normalizing
factor, z is the coordinate in the SLID growth direction, k1l and p are the in-plane position
and momentum vectors, uz(z) is the wave function for an eigenstate X with energy 8e
corresponding to the solution of the one-dimensional problem with the potential V(z) =
-3 V (z) describing the modulation of the conduction band edge, and V" (z) is the potential

of the n th well. The energies of the states {Xk } are EA.k1 = , - h2k /2m. For the
structures considered, typical well widths are such that for a single-well problem, upper
size quantization levels in the wells lie much higher than the lowest levels. Therefore, in
what follows we neglect contributions from all dimensional subbands except the lowest
one. For strong disorder, the states {Xk } are strongly localized in the z-direction and the
uj are close to the corresponding "atomic-like" wave functions with small admixture of
wave functions of neighboring wells.

The quantum transport equation describing transition between the states {)Xk1 } has a
form

d___ -- Z IWX/k X) kj1.fXk l (1 - fXfk;)- Wkl, k;i ,k (1 - fkl) (1)

X'k'

where fikj, is an average occupation number of the state {Xkl } and WxfkA,,k 1 is the prob-

ability of transitions from the state {Xk 1 } to {X'k }. Equation (1) contains both intra- and
interwell transitions. If we neglect interwell transitions, we arrive at a system of standard
independent Boltzmann transport equations; each of these describes transport and relax-
ation in the corresponding well. Since we are not interested in transport along the well
planes, we do not write out explicitly intrawell diffusion and drift terms.

We show that Eq. (1) can be reduced to a truncated rate equation that contains only
interwell transition rates. To this end, we sum both sides of Eq. (1) over klj:

dv I jWfkeXkl fqq)e

~~~~~~k1- .~ 1 fxfk,,) - WXk,X/k/f V: (1 - fXj4~k }dt t

(2)c(qe) (e

where vz = S- 1  ,kl ffjk) are nonequilibrium aerial concentrations, f~eq are the local
quasi-equilibrium (quasi-Fermi) distributions characterized by the quasi-Fermi levels /tq
and S is the structure area. In Eq. (2) the intrawell transitions canceled out. Moreover,
since for the structures considered the intrawell transition rates are much greater than those
of interwell transitions, a "local" equilibrium is established in each of the wells, and the
functions ,fk,, in the interwell transition rates can be replaced by (qe). Thus Eq. (2) is
considerably simpler than the master equation (2), since it contains no intrawell transition
rates.
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2. Linear theory and resistance network

Now let an electric field be applied in the direction of the z-axis; for states strongly localized
in the z-direction, its effect can be described by the corresponding energy shifts EX ->
E + UX, where UX is the potential energy at the localization region of the state X. An
applied field generally produces variations of carrier concentrations in the wells related to
the shifts of local quasi-Fermi levels &tj. Just as in the standard hopping theory [ 1, we
can linearize Eq. (2) taking account of the fact that transition probabilities Wxk,,,/k' are
energy-dependent. Then we arrive at the linearized equation

dvj, u+ -1 (3)
dt SkT

UX

where the "integral" transition rates are

k= k ,f;I2[( 4

((0) a e
the transition probabilities are taken with unshifted energies and ateqlr

(Fermi) distribution.
Equation (4) is similar to the standard linearized hopping rate equation [ with some

important differences. First, the sites here are not single-electron states but rather multi-
electron: they can be related to "macroscopic" quantum wells that contain many electrons.
It follows that correlation effects such as Hubbard repulsion and Coulomb gap effects are
expected to be much weaker than in standard hopping problems. Second, the transition
rates F are integral rates obtained by summing over the initial and final states of the
wells with different kl and k',.

It follows from Eq. (2) that just as in the standard hopping theory [ , the low-field
problem can be reduced to an equivalent resistance network; in our case the resistances
Rx, between the states X, and 21 are expressed in terms of the integral rates by R"-
(e/SkT)Fx,;'.

3. Discussion

It should be noted that for weak overlap of wave functions of neighboring wells and strong
disorder, instead of the eigenstates {Xkl }, we can use a basis of "atomic-like" wave functions
q, (z) localized at the corresponding wells n; in this case one can associate the sites of the
resistance network with the wells. It was shown in [ , I that for sites with finite-size cores,
hybridization effects can be important even for small overlap. In this case the interwell
transition probabilities depend on parameters (in particular, on energies) of intermediate
virtual states, and network resistances are no more reduced to two-well resistances Rn, but
are "multisite". Moreover, hybridized (cluster) states corresponding to different energies
can include different sites and, on the other hand, the same site can belong to different
cluster states, i.e., different multisite resistances can "overlap".

In some cases (e.g., for nearest-neighbor hopping or for systems with sufficiently large
disorder) the complicated structure of the network is not crucial for the calculation of the
total network resistance. In fact, if the total resistance is determined by the resistance of
the critical region, percolation arguments hold, and the network resistance can be evaluated
in a straightforward way I, 1.
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