
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP013127
TITLE: Charge Transfer Phenomena in Carbon Nanotube Heterodevices

DISTRIBUTION: Approved for public release, distribution unlimited
Availability: Hard copy only.

This paper is part of the following report:

TITLE: Nanostructures: Physics and Technology International Symposium
[8th] Held in St. Petersburg, Russia on June 19-23, 2000 Proceedings

To order the complete compilation report, use: ADA407315

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

-he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP013002 thru ADP013146

UNCLASSIFIED



8th Int. Symp. "Nanostructures: Physics and Technology" ND.02i
St Petersburg, Russia, June 19-23, 2000
© 2000 loffe Institute

Charge transfer phenomena in carbon nanotube heterodevices

A. A. Odintsov

Nuclear Physics Institute, Moscow State University, Moscow 119899 GSP, Russia
and Delft University of Technology, 2628 CJ Delft, The Netherlands

Abstract. We describe the transfer of electric charge in junctions between a metal and carbon nan-
otube as well as between metallic and semiconducting carbon nanotubes. The long range Coulomb
interaction drastically modifies the charge transfer phenomena in one-dimensional nanotube sys-
tems compared to conventional semiconductor heterostructures. Being brought into a contact with
a metal, conducting nanotube accumulates electric charge whose density decays slowly with the
distance from the junction. The length of the Schottky barrier in nanotube heterojunctions varies
from the distances of the order of the nanotube radius (nanometers) to the distances of the order
of the nanotube length (microns) depending on a doping strength. The Schottky barrier height
shows pronounced asymmetry under the forward and reverse bias. This results in rectifying be-
havior of heterojunctions, in agreement with recent experimental observations by Z. Yao et al. and
M. Fuhrer et al.

Introduction

Physical properties of single-wall carbon nanotubes (SWNTs) are determined by their ge-
ometry [ ]. Depending on the wrapping vector, SWNTs can be either metallic or semicon-
ducting with the energy gap in sub-electronvolt range [ , I. Strong Coulomb interaction
in ID SWNTs results in a variety of correlation phenomena. Away from half-filling the
correlations are well described by the Luttinger liquid-like model. In particular, the non-
Fermi liquid ground state of the system results in a power-law suppression of the density
of electronic states near the Fermi level. This was observed in single- [ I and, presumably,
multi-wall [ I nanotubes, as well as in junctions between metallic SWNTs [ ].

Of particular interest are carbon nanotube devices. The simplest can be fabricated by
contacting two nanotubes with different conducting properties. Electron transport in such
nanotube heterojunctions has been investigated in two recent experiments. Yao et al. have
treated heterojunctions at the kinks in SWNTs [ ] whereas McEuen et al. have explored
contacts of crossed nanotubes [] . Both groups have reported asymmetry in the I-V
characteristics of heterojunctions (rectifying behavior). This mihgt be surprising, since
one expects no charge transfer in contacts between two isolated SWNTs made of the same
material.

In this work we study charge transfer phenomena in nanotube heterojunctions taking
true long-range Coulomb interaction into account. We concentrate on junctions between a
metal and a nanotube and between metalic and semiconducting SWNTs. Their equilibrium
and non-equilibrium characteristics are analysed by solving the Poisson equation self-
consistently.

1. Method

Consider metallic or semiconducting SWNT with the axis z. We assume that conducting
Pz electrons in SWNT are confined to the surface of a cylinder of radius R. SWNT is
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surrounded by coaxial cylindrical metallic gate of radius R, >> R. The Poisson equation
relates the potential p (z) at the surface of SWNT to ID charge density p (z) in SWNT and
the potential (D (z) of the gate,

() + (g) (P) U Wg)

with

Uq jIo(qR)Ko(qR) I (qR (qRs)} (2)Uq=K Io0(q R,

Mq o(qR) (3)M-Io (qR,)"

Here K is the dielectric constant of the media and I0, K0 are the modified Bessel functions.
The kernel (2) describes the long-range Coulomb interaction, U(x) = 1/IKlz, for R <<
IzI << R,. The interaction is screened at large distances IzI >> Rs, so that U(q = 0) =
1/C = (2 /K) ln(Rs/R), C being the capacitance of SWNT per unit length.

In equilibrium, the charge density is related to the energy Eo(z) = Eo(z) - EF of the
gapless point (charge neutrality level) of graphite E0 counted from the Fermi level EF. At
zero temperature we obtain [ 1,

'o(z)

p(z) = e f dEv(E), (4)

0

with the density of electronic states v and e > 0. Equation (4) is valid if Eo(z) varies
slowly on the scale of the Fermi wavelength.

We restrict our consideration to low energies Ito0(z)I < A() and neglect the effect of
higher ID subbands (A( 1)/(hrvF/R) = 1,2/3 for metallic/semiconducting SWNT). The
densities of states in metallic and semiconducting SWNTs are given by,

4 4 IEI(E)(JE - A)
VM=- , VS = , (5)

7rhVF 7rhVF /E2 - A 2

A = hVF/3R being the half energy gap in semiconducting SWNT, and VF -_ 8.1 x 105 m/s
being the Fermi velocity.

In turn, the charge neutrality level is related to the electrostatic potential (I),

Eo(z) + eqi(z) = const. (6)

In what follows we will solve Eqs. (1), (4), (6) self-consistently for two situations.

2. Metal-nanotube contacts

We consider first metallic SWNT (z > 0) contacting the xy-plane of a metallic electrode
(z < 0) at z = 0 (Fig. 1 (a)). The potential of the xy-plane is chosen to be zero, and the
potential of the gate is Vg. Assuming the metal electrode to be a perfect conductor we neglect
the band bending in it. The charge neutrality point in SWNT at z --> +0 is shifted from
the Fermi level by an amount to(+0) = AW equal to the difference AW = WM - WNT
of the work functions of the electrode and SWNT, so that const = A W in Eq. (6).
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Fig. 1. Two systems under consideration: SWNT contacted to a metal (a) and heterojunction
between metallic (M) and semiconducting (SC) nanotubes (b). The potential V. is applied to the
gate electrode.

In order to fulfil the boundary condition qp(r, z = 0) = 0 for the potential in xy-plane
we solve Eqs. (1), (4), (6) with antisymmetric sources. The solution for the charge density
has the form,

2iq (AW/e -MqVg) (7)

q2 + U2 Uq+I/(e2VM)

witha• --> 0.
To evaluate the solution in the intermediate distance range R << z << R, we use the

asymptotic Uq = -( 2 /K) ln(q R). The deviation of the charge neutrality point from the
Fermi level is given by,

AW I ceVg z
E0 (z) = - -_____ -______(8)_

g ln(z/R) g Rsln(Rs/R)'

where c = (I/7r)f dxIIo(x)- 1 1.33 and the Coulomb interaction g - 2e2 vM/K is
supposed to be strong, g >> 1. One can infer the interaction parameter g 5 from the
experimental data [, ].

Using the asymptotics Uq = (2 /K) ln(Rs/R), and Mq = I for IqI << RS we obtain
the result at large distances z >> Rs,

AW -eVg
I + gln(Rs/R)

In this regime the electric field of the electrode at z = 0 is well screened by the gate and
the charge density in SWNT can be effectively controlled by the gate voltage.

3. All-nanotube heterojunctions

We will consider the heterojunction joining metallic (z < 0) and semiconducting (z > 0)
SWNTs at the angle 7r (Fig. Ib) and perform its modeling using the formalism of Section
1. Since experimental values [ , I of the heterojunction conductance are typically small,
G/(e2 /h) - 10-3 - 10-2, we will assume low transparency T << I of the barrier at the
interface between the nanotubes. In this case the electrons in SWNTs are described by the
equilibrium Fermi distribution, even if the voltage V is applied to the junction. Assuming
that the electrodes are connected to SWNTs at large distances d >> Rs from the junction
we obtain o(g) (z) = Vg. This allows us to rewrite Eq. (6) as follows,

Eo(z) + ei(1) (z) = it ± eV/2, (10)
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Fig. 2. The height u of the Schottky barrier (a) and the current I through the heterojunction (b) at
zero temperature as functions of the electro-chemical potential I and bias voltage V. The contour
lines (a) correspond to u/A = 0, 0.1 ... , 0.9 from periphery to origin. The energies I, eV are in
units of A. The current is in units of 2eA Ti/(7r h).

where p-t-e V/2 are the electro-chemical potentials for holes in metallic and semiconducting
SWNTs and p = A W - e Vg. Note that the problem becomes non-linear due to the presence
of semiconducting SWNT.

Figure 2(a) shows the result for the SB height u defined as the minimum energy of
electron or hole excitation required to transfer the elementary charge across the junction in
the absence of tunneling through the SB. The SB height shows pronounced asymmetry as
a function of the bias voltage. At small electrochemical potential the SB height at forward
(reverse) bias is determined by the energy of the valence (conduction) band in the "bulk"

(b)of semiconducting SWNT, x -- oc, with respect to the Fermi level, uf(r)() = A +: EO(oc),

with k0(oc) = pt + eV/2. This corresponds to straight portions of contour lines in the
lower part of Fig. 2 (a). In particular, the positive V+ and negative V_ threshold voltages
at which the SB vanishes(u (b) = 0) are given by eV(b) = ±2-A - 2p.

Straight portions of contour lines (Fig. 2(a)) are interrupted by cusps. At forward bias
the cusps occur along the line eV = 2/t (Fig. 2(a)) where the charge density in metallic
SWNT and the band bending change sign. Above the point of a cusp, the height of a SB
at forward (reverse) bias corresponds to the energy of the valence band at the interface
of SWNTs, x = 0, counted from the Fermi level of semiconducting (metallic) nanotube,
uiE- (±0). The threshold voltages V correspond to suppression of a SB

f(r) 0 V(-)'

at the interface, uf(r) = 0. Note that at [t A/2 the positive threshold eVý(') -' A is
relatively insensitive to the electro-chemical potential, Fig. 2(a). This can be used for a
rough estimate of the gap from experimental data.

The asymmetry of the I - V characteristics and threshold voltages has been discovered
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in recent experiments [, ]. According to the data of Ref. [ both the thresholds V+,
V_ shift upwards with the gate voltage. Moreover, the positive threshold shifts less than
the negative one. Such behavior is consistent with our model in the regime of moderate
doping, 0.5 < Lt/A < 1.8 (Fig. 2). However, the blockade region of 3-4 V detected in the
experiment is somewhat wider than the theoretical estimate, V+ - V_ < 6.5A _ 2 eV. The
extra voltage drop could be due to potential disorder in semiconducting SWNT [ I and/or
an additional SB at the interface between semiconducting SWNT and metallic electrode.

We now check the model against the experimental data of Ref. [] . The measured
width of the blockade region, 0.5-0.7 V, agrees with the theoretical estimate. The gap in
semiconducting SWNT, A _ eV+, evaluates at A = 0.19, 0.29 eV for the two devices
studied 1 ]. These values are in the expected range A - 0.25-0.35 eV [ , ]. A smooth
onset of the current over the range - 0.1-0.3 eV around threshold voltages is naturally as-
sociated with quantum tunneling through a "leaky" SB (thermal energies are much smaller,
kBT -- 5 meV). Finally, the step-like feature of the current under reverse bias almost cer-
tainly corresponds to the reconstruction of the band profile due to the Fermi level entering
the conduction band of semiconducting SWNT.

4. Conclusions

To conclude, we have studied the electronic properties of carbon nanotube heterojunctions
and provided explanation for the main features of recent experimental data [ , ]. Due
to the long-range Coulomb interaction, the charge transfer phenomena in one-dimensional
nanotube systems differs drastically from those in conventional semiconductor heterostruc-
tures. This creates new challenges in the design of novel electronic devices.
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