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Abstract. A concept of light confinement in quantum dots due to diffraction of electromagnetic
waves at the dot boundary, is introduced. Possible manifestations of the phenomenon, such as
depolarization shift of the exciton frequency, polarization-dependent splitting of the gain band,
asymmetry of the absorption and gain spectra, induced magnetization of quantum dots, contribution
to radiative lifetime, are discussed both for isolated quantum dots and quantum dot ensembles. We
propose that the effect of light confinement should be properly addressed to optimize the design of
optoelectronic devices involving quantum dots.

Introduction

A fundamental breakthrough in semiconductor device physics is connected with the recent
progress in the synthesis of sheets of nano-scale 3D confined narrow-gap insertions in a
host semiconductor, quantum dots (QDs). The large body of recent results on physical
properties of QDs and their utilization for the QD laser design has been accumulated
in a monograph [ ]. The key peculiarity of QDs emerges from the 3D confinement of
the charge carriers determined by QD size and shape. However, there exists a class of
effects governed by the QD size and shape, which have not received much attention so
far. These effects are related to resonant nature of the exciton which provides a dramatic
resonant discontinuity of the permittivity at the QD boundary and, consequently, gives
rise inhomogeneity of the electromagnetic field both inside and outside QD. By analogy
with charge carrier confinement, redistribution of the electromagnetic field energy between
the QD interior and exterior under effect of the QD boundary can be referred to as light
confinement. In many cases the role of light confinement can properly be accounted for the
formation in QD of depolarization electromagnetic field, e.g., in dipole approximation of
the diffraction theory.

To our knowledge, some physical consequences of the light confinement in an individual
QD first time were considered by Schmitt-Rink et al. []. Manifestation of this phenomenon
in relation to the scanning near-field optical microscopy was discussed by Martin et al. [ 1
for geometrically complex mesoscopic systems and by Hanewinkel et al. [ ] for QDs. An
asymmetry of optical absorption and gain spectra in single QD because of depolarization
field has been mentioned in Ref. [ ]. Recently it has been predicted and experimentally
verified that the light confinement in QD arrays constituted by anisotropically shaped QDs
manifests itself as polarization splitting of the gain band [ I and, in more general case, as
the fine structure of this band [ ]. Such a splitting was first experimentally observed by
Gammon et al. [ where the depolarization field effect has been proposed as possible
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explanation of the splitting. Some new effects related to the light confinement in QDs are
considered in Ref. [ -.

In our paper we introduce sequential concept of light confinement in 3D-confined res-
onant nanoinsertions and discuss some general consequences of this phenomenon in an
isolated QD and in QD arrays. Our consideration is based on classical electrodynamics of
inhomogeneous media.

1. Depolarization shift of the exciton resonance

L.L. Polarizability of a single QD

Conventional phenomenological model of the gain in a QD is based on semi-classical
theory of two-level systems which gives the equation of motion for the mean polarization
TP caused by transitions between the levels:

++- +c 4W. (1)T at 27r c/

Here wo is the exciton resonant frequency and r is the exciton dephasing time in QD. The
phenomenological parameter go is proportional to the oscillator strength of the transition.
In anisotropically shaped QDs this parameter is tensorial owing to anisotropy of the charge
carrier confinement [ 1. In an inverted medium (gO)ij > 0. The field S stands for
the field inside the QD, different from the external acting field E. This difference is
determined by the depolarization field which is as follows [ 1: S = E - 4rN 7', with
N as the depolarization tensor. This tensor is symmetrical and depends only on the QD
shape. If we neglect the contribution of the depolarization field putting E = E into
Eq. (1), solution of this equation in the vicinity of resonance for time-periodic fields and
isotropicio = go' gives the well-known Lorentz contribution to the medium polarizability:
C4(0) = (go/0 h)[O - No + i/r 1-1, which is commonly used as phenomenological model of
the dispersion and the gain of a single QD: 8d (O) = 8h 1I + u (o)]I. Otherwise, taking into
account the contribution of the depolarization field, we obtain the tensorial polarizability
of QD in the vicinity of resonance:

=- -[ (o- -) (. (2)Th 8hcO)

Thus, the QD's shape reflects itself as fine structure of the resonance which itself is a

superposition of three bands with frequencies .)w(, = o - vj, i, j = 1,2, 3, where vj are
the eigenvalues of the inner tensorial product goN/8h. For spherical inclusions the tensorsN
andj 0 are isotropic and the fine structure manifests itself as a polarization-independent shift
of the gain line depicted in Fig. 1. If the energy splittings are much less than the bandwidth,
which means the inequality for energy spacings max IAoij = o() (J) 2/ to
be true, the depolarization field will lead to a distortion of the gain band similar to the
inhomogeneous broadening. Otherwise, when I Ao}ij I - 2/r, three separate bands will
appear in the gain spectrum of a QD array.

1.2. Birefringence in QD arrays

Since the QD linear extension is much smaller than the resonance wavelength, electromag-
netic properties of such ensembles - composite materials - can be modeled in the framework
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Fig. 1. Depolarization shift of the exciton resonance in spherical QD. Input parameters: 8h = 12.25,
X = Ipm, A Q = (0- _oo, r = 10-11 s, go = I x 1014(1), 2.5 x 1014(2)5 x 1014(3) s-. For
curve 4, r = 10-13 s, go = 5 x 1014 S-l.

of the effective-medium approach. Thus, a homogeneous medium with effective constitu-
tive parameters instead a composite is being considered. We restrict ourselves to a regular
array of QDs arranged in a tetragonal lattice. Assuming QD to have a symmetry axis aligned
with the lattice vector e•, the effective permittivity tensor of the composite can be expressed
in terms of a Cartesian basis diadics by %eff (w) = 8H (w) (e, e, + eye,) + 8 E (w)eze, , where

8, (Wo) = 8h + I +f "W -(3)1 + fv oao (w)

andcr = (E, H) refers to light polarized along (E-polarization) or normal (H-polarization)
to the z-axis; fv is the volume fraction of QDs. The polarizability components a, follow
from Eq. (2). The depolarization factors N, and the geometrical coefficients 6, (see I , 1)
correspond to two different mechanisms responsible for modification of the gain in arrays.
The first mechanism is related to the light confinement at individual QDs. The second one
is a collective effect defined by electromagnetic interaction between QDs in the ensemble.
The combined effect of both mechanisms is given by

(o r)c = No0 - -(N , + ,fv 6,) , F(,) - I1 - go (4)
NN h T ( h N~o )

The phenomenological temporal parameter T in these equations is the collective character-
istics of the QD array which must be extracted from the experiment.

In the language of crystal optics, the QD composite being considered is effectively
a uniaxial dielectric medium with the z axis as its preferred axis. The phenomenon of
birefringence is characteristic for this medium: Both ordinary and extraordinary planewave
propagation can occur in it. The refractive indices of these waves, nH and nE, respectively,
are given by

nH H= le-H-, nlE 2 0 = (5)
1 H +J (8E - 8•H) COS2 I

where 0 is the angle between the z axis and the propagation direction. Eq. (5) shows that
nH = nE when the propagation direction coincides with the z axis (0 = 0), and nE =
when the propagation occurs in the x0y plane (0 = 7r/2). Distinction between nH and nE
in this geometry is responsible for the polarization splitting of the gain band described in
details in Refs. [ , ].
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2. Radiative lifetime of spherical QD

Let an isolated spherical QD of the radius R be exposed to an external time-harmonic
electromagnetic field. Well-known exact solution of the diffraction problem for a sphere
is essentially simplified [ ] in view of the condition kRl-c- << 1, which is valid for any
realistic QDs. This solution and presents the field outside the sphere in terms of its electric
and magnetic polarizabilities:

3 [8d (w) F (K) - 8h ]

[8d(w)F(K) + 2 8h](1 - ikR,/-•) + i(kR)2 2F(K)

3[F(K) - 11

[F(K) + 21(1 - ikR) + i(kR) 2 F(K) (

HereK• = kRe d(o), F(K) = (sin K -•K cosK•)/[(K 2 - 1) sin•K +•K cosK K]; F(K) = I in
dipole approximation. In QWs, the problem of the radiative lifetime evaluation is solved
by finding of frequency poles of the reflection and transmission coefficients for TE- and
TM-polarized plane waves (see, e.g., [ 1). Real parts of these poles determine resonant
frequencies while imaginary parts give the homogeneous linewidths, which are sums of the
dephasing broadening and the radiative broadening. For QDs, we must evaluate the poles of
the electric and magnetic polarizabilities. In dipole approximation, simple manipulations
lead to

QD _ 9 (8)Srad - 4 Rr2g- . (8

We note that the material gain go in QD is incorporated as phenomenological parameter
in this equation. It is, indeed, a function of the QD size, shape, strain distribution and an
effective coefficient of light confinement in a QD. Depending on particular situation go can
either increase or decrease with R. In the case when the light confinement is not relevant
and the overlap integral is not a function of QD size (the case which is shown to be not
correct for real QDs) go - R- 3 . In any case, Eq. (8) shows additional radial dependence of
the radiative lifetime as compared to the conventional dependencies (see, e.g., [ , , 1).
Figure 2 presents radiative lifetime numbers obtained from different theoretical approaches
and experiments. Conventional model including the realistic overlap integral [ ] is shown
in Fig. 2 as open squares while this model with unit electron and hole wavefunction overlap
integral [ ] is presenter by dashed line. The experimental results for radiative lifetimes
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Fig. 2. Radiative lifetime of an isolated QD as a function of the photon energy
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in InAs QDs having different size (pyramid base length between 10 and 20 nm) derived at
low temperatures using both resonant and non-resonant excitation is shown in the figure
by solid squares. One can see that these results agree only in the case of smaller QDs,
where the role of light confinement on radiative lifetime seems to be relatively weak. As
opposite, as the QD size increases, the theoretical dependence and experimental values
differ qualitatively. As the structural quality and luminescence efficiency of larger QDs
remains high allowing high-efficiency high- power device applications [ ], the reason for
such a discrepancy can be only related to the discussed light confinement effect at QD.

3. Conclusion

We have introduced a concept of light confinement and investigated its role in electromag-
netic response of QDs. We calculated significant diffraction-induced shift of the main QD
exciton line. Evaluation of the radiative lifetime for spherical QD and its correlation to
the QW radiative lifetime shows the origin of the fascinating light-amplifying properties
of QDs as compared to QWs and creates a basis for solving of a large number of electro-
dynamic problems of QDs and QD ensembles. We show that the experimentally measured
radiative lifetime qualitatively disagrees with theoretical predictions arising from models
neglecting the light confinement effect at QD. Thus one needs to consider redistribution
of the electromagnetic wave caused by QD to reach optimized device geometry. This is
particularly true for a QD inserted in a microcavity, where cavity modes may interfere with
intrinsic photon modes of a single QD. In our paper we mainly restricted ourselves to the
spherical model of QD. Different QD configurations like disks or pyramids can be inves-
tigated using direct computation on the basis of the well-developed method of classical
electrodynamics.

Acknowledgments

The research is partially supported through INTAS under project 96-0467 and the NATO
Science for Peace Program under project SfP-972614. N.N.L. acknowledges DAAD Pro-
fessorship. We are grateful to L. Asryan for helpful discussions.

References

[1] D. Bimberg, M. Grundmann and N. N. Ledentsov, Quantum Dot Heterostructures (John
Wiley & Sons, Chichester, 1999).

[2] S. Schmitt-Rink, D. A. B. Miller and D. S. Chemla, Phys. Rev. B 35, 8113 (1987).
[3] 0. J. E Martin, C. Girard and A. Dereux, Phys. Rev. Lett. 74, 526 (1995).
[4] B. Hanewinkel et al., Phys. Rev. B 55, 13715 (1997).
[5] G. Ya. Slepyan et al., Phys. Rev. B 59, 12275 (1999).
[6] S. A. Maksimenko et al., J. Electron. Mater. (2000, to be published).
[7] D. Gammon et al., Phys. Rev. Lett. 76, 3005 (1996); Science 273, 87 (1996).
[8] S. A. Maksimenko et al., Semicond. Sci. Technol., (2000, to be published).
[9] L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media (Pergamon Press,

Oxford, 1960).
[10] M. Asada, Y. Miyamoto andY. Suematsu, IEEEJ. Quant. Electr 22, 1915 (1986).
[11] N. A. Khiznjak Integral equations of macroscopic electrodynamics (Naukova Dumka, Kiev,

1986, in Russian).
[12] E Tassone, E Bassani and L. C. Andreani, Phys. Rev. B 45, 6023 (1992).
[13] L. V. Asryan and R. A. Suris, Semicond. Sci. Technol. 11, 554 (1996).
[14] 0. Strier, M. Grundmann and D. Bimberg, Phys. Rev. B 59, 5688 (1999).
[15] A. E. Zhukov et al., IEEE Photonics Technol. Lett. 13, 1345 (1999).


