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Abstract. Spin relaxation in-plane anisotropy is predicted for heterostructures based on zinc-blende
semiconductors. It is shown that it manifests itself especially brightly if the two spin relaxation
mechanisms (Dyakonov-Perel and Rashba) are comparable in efficiency. It is demonstrated that
for the quantum well grown along the [001 ] direction, the main axes of spin relaxation rate tensor
are [110] and [110].

Introduction

Spin relaxation processes have significant effect in optical and kinetic properties of semi-
conductors. They play important role in optical orientation of electrons and nuclei [ ] and
in anomalous magnetoresistance caused by weak localization [ ]. Now, big interest to spin
dynamics and relaxation exists due to a spin transistor creation attempts. Both theoreti-
cal calculations and experimental data analysis have been carried out assuming that one
spin relaxation mechanism dominates only. Therewith in spite of the strong anisotropy of
spin-orbit scattering, the relaxation times of spin lying in the plane of a heterostructure with
zinc-blende lattice turn out to be independent on orientation with respect to crystallographic
axes.

This communication is devoted to an investigation of spin relaxation processes in real
heterostructures when several mechanisms of spin-orbit scattering exist. We show that
contributions of these mechanisms interfere and their simultaneous action leads to the
strong anisotropy of spin relaxation even in the plane of a quantum well (QW).

1. Theory

In zinc-blende semiconductors, spin relaxation of electrons is well known to be due to spin-
orbit splitting of conduction band. In a bulk crystal, the splitting is cubic in wave vector.
In a QW structure, the corresponding Hamiltonian has to be averaged over the motion
along the growth axis. We consider the QW grown along z-direction parallel to [001 1 and
choose x and y directions coinciding with crystallographic axes. At relatively small carrier
concentrations, one can neglect cubic in 2D wave vector terms and the Hamiltonian has the
form:

Hi = al (cxrkx - ryky) (1)

Here ori (i = x, y) is the Pauli matrix, ki is the wave vector component in the plane of the
QW. aI is a constant which is determined by both bulk properties of the semiconductor and
the value of k2 averaged over the z-motion.
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In asymmetrical heterostructures, there is a contribution to the Hamiltonian which is
absent in the bulk [ 1:

H 2 = a 2 (axky - aykx), (2)

where a2 is the constant determined by heterointerface properties. It is equal to zero in a
symmetrical structure and is proportional to the barrier height difference in an asymmetrical
QW or to the electric field in a triangular QW. It is possible to change the value of a2

by varying a gate voltage applied to the system or by another changing of the structure
symmetry.

The relationship between the constants al and a2 may be different in different systems.
aI may be much larger than a2 [ ], much less than a2 [ I or they may be comparable [] .

The most interesting case realizes when the constants al and a2 are equal to each other
by absolute value:

al = ±a2.

In this case, the total spin-orbit Hamiltonian is:

H' = H, + H2 =aI(Cox, Fry)(k ± k,). (3)

Therefore for electrons with the spin along [1 101 or [IiO1, H' = 0 for any value of the
wave vector, k. It means that the spin relaxation time caused by both mechanisms, (1)
and (2), is infinite. In other words, the spin relaxation mechanisms due to splittings (1)
and (2) suppress each other totally.

In the general case, when al and a2 are arbitrary, we have obtained the following
equations for spin dynamics [] :

Sz -- S ± Sy- (4)
Tz T±

Here
1 2 2 1 C2- C(a2 + a2), - 2 (al ± a2)2 , (5)

TZ T± 2

and C is determined by properties of the scattering potential and electron distributons in
spin sublevels. Note that the equation (4) is valid at times longer than the momentum
relaxation time but shorter than the spin relaxation times [].

2. Discussion

It is seen from Eq. (5), that if aI = ±a2, "Tr = oc, and the other time, r±, is equal to rz.
Besides, one can see the spin relaxation anisotropy even in the plane of the heterostructure.
All three times, -r+, T_ and rz are different in the general case.

One can also see from (5) that at only one spin relaxation mechanism, when aI = 0 or
a2 = 0, spin relaxation is isotropic in the plane of a the heterostructure:

T+ = T_ = 2 rz . (6)

It means that, despite the cubic anisotropy included into the Hamiltonian HI or H2 , it
averages and does not exibit itself in spin relaxation. In the presence of both spin relaxation
mechanisms, on the contrary, the cubic anisotropy does lead to the difference between the
spin relaxation times for spin lying in the plane of the heterostructure (see (5)).
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The spin relaxation anisotropy results from the initial Td symmetry of the zinc-blende
semiconductor. For this reason, the similar effect can take place in a strained bulk crystal.
The corresponding Hamiltonian linear in 3D wave vector, k, and components of an elastic
strain tensor, u ij, has the form:

H'(u) = A, uji (±i+lk±i+ - ri+ 2ki+ 2) + A2 Uij (cxikj - cxjki). (7)

Here i, I = x, y, z, i + 3 -- i, AI and A2 are constants. Deriving the spin dynamics
equations for this spin-orbit Hamiltonian, one can obtain three different spin relaxation
times. It can be shown that the maximum anisotropy may be achieved if

AI u,, = AI uy, = --AI u,,/2 = A 2u1,/3 (8)

with the rest of uij = 0. Therewith two spin relaxation times are equal to each other and
the third is infinite. Note that the tensor uij determined by (8) may be obtained by applying
two uni-axial strains along the axes [001 and [1101 and they are not restricted to uni-axial
strain along any axes.

3. Conclusion

The possibility for spin relaxation suppression was noted in Ref. [I for a QW grown along
[1101 direction when the spin is oriented along the same axis. The present work shows
that the spin relaxation rate also decreases for [1101 direction, but in a QW grown in the
symmetrical direction [0011. Therefore this decrease takes place for the spin lying in the
plane of the QW.

Analyzing weak localization effect, the authors of Ref. ] showed that the mecha-
nisms (1) and (2) suppress each other in anomalous magnetoresistance, but they are addi-
tive in spin relaxation. The present analysis shows that the suppression occurs in the spin
relaxation also. Besides, we have found that spin relaxation is anisotropic even in the plane
of the QW.
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