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Abstract. Recent experiments on (001) GaAs/AlGaAs structures revealed a new phase in the
excited Landau levels. The results can be related to spontaneous formation of unidirectional
charge density waves ("strip phase"). We address to the unsolved problem: why stripes are pinned
coherently across the sample along [110]. Developing the Kroemer's idea about the role of C2,
symmetry in this system we show that for (001) A3B 5 single heterojunction the conduction band
in-plane effective mass is anisotropic. This anisotropy and the optical anisotropy in heterostructures
with different cations and anions have the same origin. Although very weak, the difference in the
conduction band effective masses along the crystallographic [110] and [110] axes may define the
direction of the stripes. The results agree with the experiments in tilted magnetic fields.

Recent studies of ultra-high quality 2D electron systems in (001) GaAs/AlGaAs hetero-
junctions near half-integer filling factors v > 9/2 at very low temperatures I,, ] revealed
a new class of correlated many-electron states which is believed to be related to predicted
in [ ] spontaneous formation of charge density waves ("strip phase"). This hypothesis is
based on the observation of a giant magnetoresistance anisotropy in such systems, the lon-
gitudinal resistances in the two perpendicular crystallographic [1101 and [1 i0 directions
have a ratio Rx,/Ryy - 5-3500 (depending on the way of measurements), [ 1101 being
the direction of low resistance. Also it was shown [, I that the in-plane magnetic field B1 ý
as strong as - I T may reorient the directions of low and high resistances. The conclusion
that for high in-plane fields the high resistance axis is parallel to the direction of the in-plane
field was made [ ]. Similar results for Bl1 along [1101 at all half-integer v > 9/2 and for
B1i along [Ii0j at v = 11/2 and v = 15/2 were obtained in [ . The authors of [ Icame to
the same result through the Hartree-Fock calculations. They found also that at B1 ý = 0 the
native anisotropy energy that determines the preferred orientation of the in-plane stripes of
alternating charge density is less than only kB 10 mK per electron. However, the origin of
the native mechanism making the stripes coherent over the macroscopic size of the studied
samples at is still not uncovered. It is one of the basic unsolved problems.

Here we are developing the idea of Kroemer [ ] that it is C2, symmetry of the het-
erostructure potential confining 2D electron gas that may lead to the effect. Briefly, we
will show that due to the asymmetric potential of the heterojunction there exists the native
anisotropy of the in-plane conduction band effective mass (EM), and it has the same order
in magnitude as the anisotropy of EM induced by the in-plane magnetic field of magnitudes
used in the above experiments. Also, due to the combined effect of the Dresselhaus and
Rashba terms the spin-orbit interaction is anisotropic [ ]. This type of the native anisotropy
and its effect on the quantum-Hall strip phase is not discussed here. It requires further study.

To consider the problem one starts from the the one-particle EM equation for electrons in
a (001) A3 B 5 heterostructure with a single heteroj unction. It was shown [ 1 that the properly
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50 2D Electron Gas

constructed many-band system of envelope-function equations preserves information about
the lowered symmetry of the heterostructure (C 2 0) as compared to the symmetry of the host
materials (Td). The light hole-heavy hole mixing at the center of 2D Brillouin zone is one
of the consequences of the symmetry lowering 1_ . This mixing leads to the giant optical
anisotropy (with the same principal axes [1101 and [1101) in heterostructures composed
of materials with different cations and anions observed experimentally [ 1. It is obvious
that the symmetry C2, should manifest itself in EM equation for conduction band too.
However, the derived in [ I one-band effective Hamiltonian for electrons lost C 2v symmetry
information. To construct the effective Hamiltonian having C 2v symmetry means that now
we should go beyond the approximation used in [I and consider smaller but important
here anisotropic terms. Because of the limiting accuracy of the method [I , we might not
allow for them if we were interested merely in more precise calculation of the conduction
band states. Such contributions may be taken into account just because they provide the
symmetry lowering-the effect which is absent without them. So, as we are not interested
here in terms of symmetry higher than C 2v, the effective Hamiltonian may include only the
leading potential and kinetic energy terms (used in standard EM approximation) and the
leading anisotropic term which will be found below.

We may obtain the correct Hamiltonian having C 2v symmetry via the method of invari-
ants. Setting the spin-orbit interaction aside (we will not discuss it here) one may conclude,
that the information about C2v symmetry should be found in the kinetic energy operator. If
we assume that the in-plane components of momentum P, 11 [1001 and/Py 11 [0101, then the
most general form of the quadratic in the in-plane momentum kinetic energy operator has
the following form

+i2 + p!)

?2 + 2- (ý, + Py (1)2m* 2

Here m* is the conduction band EM, A defines the in-plane EM anisotropy. From the

derived in [ many-band system of envelope-function equations we have indeed

) 2 (s I/P. I n)Dn,,(n'Ipy I s)+4Ds (n I P, I n')(n'l py Is) (A(z) 6(zy m2 (Es .. <,_•' (2)
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Here 6(z) is the Dirac 6-function, z = 0 defines the position of the heterointerface,
(n I P I n') is a-component of the interband (for bands n and n' at F-point) matrix el-
ement of momentum, s is the conduction band index, mo is the free electron mass, and En

means the nth band edge energy of a host material. The parameter

Dnn' (<n I 6U sin(47rjz/a) n)' dG(z) C 4r.s dz. (3)

(n 47r I/a f dz co a zj=±LI,L2 .... 4-ja 0a0z dz 3

Here a is the lattice constant. The appearing in the above expression functions are defined
the way the crystalline potential of the heterostructure is

U(r) = U1 (r) + G(z)WU(r), (4)

U1 is the crystalline potential of one of the materials of the heterojunction, and U2 =

U1 + 6U is that of another one. Note, that parameter Dxy defines the light hole-heavy hole
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mixing at the center of 2D Brillouin zone, here X and Y are indexes of the Bloch functions
of the valence F15 band edge (transforming like x and y under symmetry operations of the
group T,) I , 1.

If we perform the 45°-rotation of the coordinate system, so that in new coordinates
x I 1 i0 and y 1 [ 1101, and then add magnetic field B with the gauge of the vector potential
A = (Byz, -Bxz + Bzx, 0), the conduction band Hamiltonian will take the form (without
spin-orbit interaction)

H '2 + V(z) + - A(z) (P + -B z)

2m* 2 -m* c
2c•~~ ~ + c,~)(p Bz2 e 2.

+I (I + 1(z)) ( - 5-Bz +Bx) (5)

Here V(z) is the conduction band potential, e is the absolute value of the electron charge
and c is the speed of light in vacuum.

For 2D electron gas the in-plane magnetic field may be treated as a small perturbation
]. To the second order in B11 this leads to the diamagnetic energy shift and an increase

(for ground electric subband) of EM in the direction perpendicular to the direction of the
in-plane magnetic field. The native anisotropy of EM may be treated as a small perturbation
too. For simplicity we assume that B1i is parallel either [110! or [1101 so that B, By = 0.
Including all terms to the second order in B1i and first in A we obtain for the zeroth subband

HO = E0 + 2e'c2  + B2) ((Z) _ (Z)20)

+ AN By A (Px + e (Z)00)2

2m* 2 B2 c

+2 AN +2- AB) (y + -Bzx - -Bx (z)00) (6)+2--m 1 2 B2 c c

The values of the native and magnetic field induced anisotropies of EM are

2 e2 B 2 -,! { } m 1

AN = 2m* (A(z)) 00 , AB = -2 ( E O
MC E,, - E

Here Em is the mth electric subband edge energy at B = 0. Using the rough estimations
below let us evaluate AN and AB at B1i = 0.5 T (in experiment [1 such in-plane mag-
netic field, when B1i along [1101, makes initially anisotropic magnetoresistance essentially
isotropic; higher B1i reorient the direction of low resistance).

2(s I•IX)Dxy(YIPs) D8z)o xy lO2g_ 8

(A(z))oo - 2((z)) 00  10-2A-. (8)

Here Eg = 1.5 eV is the band gap, m* = 0.067mo, and Dxy - 0.2 eVA (in 1 it was
found Dxy - 0.5 eVA for GaAs/AlAs). For AB we need also

S Z()m 12 (50,k)
2

M Em - EO 0.01 eV (9)
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Finally we have

AN = 0.27. 10-2 = 0.27%, AB = 0.33. 10-2 = 0.33%. (10)

Matching of these values coming from quite different mechanisms is very good. Now we
may conclude that as the in-plane magnetic field BjI 1  0.5 T has a strong influence on
the direction of the stripes and the value of the ratio RX/RYy, the native anisotropy of the
in-plane EM can be that mechanism making the stripes coherent over the macroscopic size
of the studied samples. If so, from the experiment [ 1 we may conclude that (A(z))00 < 0.
Moreover, knowing the parameters of the structure more definite (or getting the magnitude
of the magnetic field induced EM anisotropy from experiments) one may deduce (A(z))O0
from the dependence of the magnetoresistance anisotropy versus in-plane magnetic field
[ ]. The magnitude of the parameter that governs the native in-plane EM anisotropy may
become one of the characteristics of the heterointerface [ .
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