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Polaron exciton in spherical quantum dot

L P. Ipatova, A. Yu. Maslov and 0. V. Proshina

Joffe Physico-Technical Institute, St Petersburg, Russia

Abstract. The electron and hole polaron energies are found in a quantum dot made of the materials
with high ionicity. It is shown that the energy of hole polaron is larger then the energy of electron
polaron due to the degeneration of the valence band. Polaron energies increase with decreasing of
the quantum dot radius. In the interband optical transitions, polaron effects are partly compensated,
because electron and hole create the polarization potential wells with opposite signs in the process
of optical transition. It is shown that there is no total compensation when the degeneration of the
valence band structure is taken into account. Therefore the interband transitions are accompanied
by the polarization of the medium. The polarization leads to the intensive phonon replicas of the
electron transition and to the large Stokes shift of absorption and emission light.

Localization of charge particles in quantum dot results in considerable increase in electro-
static energy of particle interaction. Since longitudinal optical phonons in ionic crystals
have also electrostatic nature, the enhancement of the electron-phonon interaction in nanos-
tructures occurs. As a result, polaron effects increase also [1, 21.

If the polaron binding energy is less than the energy of size quantization in the dot, one
has the strong confinement regime [31 when
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Here ao is the polaron radius and R is the radius of spherical quantum dot.
The binding energies of electron and hole polarons and polaron exciton can be found

by adiabatic approach based on parameter (1).
In zero approximation, the electron wave function and energy are defined by Schrddinger

equation
!fe pe(In): [ 2 V2 +V (I) en) : ~_el(In),

L2me V +V(r)j W = E_ e (2)

where Ve(r) is the quantum dot potential energy for electron, I is the electron orbital
quantum number and n is the radial quantum number. Since the energy in Eq. (2) does
not depend on magnetic quantum number m, we do not label the wave function with m for
simplicity.

The description of the hole is based on the Luttinger Hamiltonian
(Qq/FN) _ l 5} ý20 _m0F) F)

= [hI + ¾' 2  - r() + Vh] EhJF N) (3)

Here Vh(r) is quantum dot potential energy for hole,
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ml and mh being light and heavy hole masses. The quantity j is the effective "spin" of the
hole which is equal to 3/2 for typical semiconductors. [Spin-orbit interaction is not taken
into account1. The hole wave functions are classified according to total angular momentum

F = l + j, where i is the orbital momentum of the hole. The quantity N is the radial
quantum number.

Polaron states of the electron and the hole are described by the following Schr6dinger
equation

[[ileOh + + hoqajaq + e --- h qq1 (aqeiqr + aqe )] q 4 e,h= E4e,h. (4)
q q

Here aq, a+ are the annihilation and creation phonon operators, se1  8- i
optical dielectric permittivity, Wq is the frequency of longitudinal optical phonon. The

second term in Eq. (4) represents the phonon field and the third term is the electron-
phonon interaction with longitudinal optical phonons. We consider the electron-phonon
interaction to be strong. All three terms in Hamiltonian Eq. (4) have the same order of
magnitude (Pekar polaron).

Adiabatic parameter Eq. (1) allows to make an average of Eq. (4) over the fast motion
of the electron or hole in the quantum dot. One has for the electron Hamiltonian

In) +E_ + (hIqajaq + 27rh Wq [(ln) + (In) a (H(Vs = q +- (qaq p e(q)aq, (5)
q q

where p(ln)(q) = feiqr[4J(In)(r)]2 d3r is electron density. The unitarian transformation

u1i) exp V (pIn) (q)a+ _ p(n) * (!)aq)], (6)qL q 8 OV q ( q
q

allows to make the diagonalization of matrix He for Eq. (5)

fe(In) = Eln- 27re 2 
v p(Jf)(q)12 + Y hOqa+aq. (7)

q q

Second term in Eq. (7) is the polaron renormalization of the electron energy

A Ee(in) -- 27re 2  1p(I")(q) 12
Vs - q 2

Further calculations require the knowledge of electronic wave functions T1 (In) (r). They
were obtained by Al. Efros and A. Efros [31

,p(en) Jd[C,(1)r/R]jY1 (0, 0)
-,J!÷lI [On (1)]1

where Cn (1) is nth root ofIth spherical Bessel function J1 (x), Y1m (0, 0) is spherical function.
Substituting the wave function Eq. (9) for spherical states with I = 0 in Eq. (8) results in

isE(eOn) e2 , Si(2n7r) Si(4n7r)(-- 2e = + , (10)
2e R 2n~r 4n~r )
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Fig. 1. The dependence of hole polaron energy Fig. 2. The dependence of exciton polaron en-
on the mass ratio P = ml/mh, ergy on the mass ratio [ = ml/mh.

where Si (x) is the integral sinus.

The polarization energy of the hole polaron A E(FN) is calculated in a similar way from
Eqs. (3) and (4). The wave function of the hole in the spherical dot is taken from [41. The
dependence of the hole ground state energy om the ratio of the light and heavy hole masses,
/3 = ml/mh, is shown in Fig. 1.

The electron and the hole create in the interband optical transition their own potential
polarization wells of opposite sign. Nevertheless, the degeneration of the hole band prevent
the compensation of polaron effects. There appear the polarization quasiparticle which is
called polaron exciton [5j1.

Under condition of strong confinement Eq. (1), the Coulomb interaction of the electron
and the hole and their interaction with polar optical phonons are small with respect to the
energy of size quantization. The wave function of the electron-hole pair is reduced to the
product

4P (re, rh) = n)(re)h(N) (rh), (11)

whrewae untins(In) (FN)
where wave functions Te (re) and hFh (rh) are defined by Eqs. (2) and (3), respectively.

Taking an average over the fast motion of the electron and the hole in a quantum dot
and using the wave functions from [3, 41 one can find the polaron exciton energy

e2

A E(lnFN) - - (iB(lnN) (/3), (12)
2eR

where dimensionless coefficients B(lnJFN)(/3 ) depends on the ratio of light and heavy
hole masses /3. This dependence for optical transition between the electron ground state
(1 = 0, n = 1) and the hole ground state (F = 3/2, N = 1) is shown in Fig. 2. It is follows
from Eq. (12) that exciton polaron energy AE(ln, FN) decreases with R.

Polaron exciton in quantum dots manifest itself in multiple phonon replicas of the same
intensity as electronic zero-phonon line and in the strong Stokes shift between the absorp-
tion and emission lines. Both effects were observed experimentally for A2B 6 quantum dots
in glassy matrix [6, 71.
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