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Abstract. The symmetry of wurtzite (GaN),, (AIN), is established to depend on the numbers of
monolayers of constituent materials in the primitive cell being C4 (odd m + n) or Cv (even m + n).
As a result, it was shown that the number of Raman-active modes depends non-monotonically
onm +n.

Spectacular successes in I11-V nitride technology (GaN, AIN, and InN) in recent years
have fostered the growth of short-period (GaN)m (A1N)n semiconductor superlattices (SLs)
[I I which can be considered as candidates for high-efficiency blue-light-emitting devices.
However, the study of their phonon spectra was hindered by absence of any symmetry analy-
sis. In the present paper, we present a complete group-theory analysis of the (GaN)m (A1N)n
SLs including the determination of their space groups, phonon symmetries, and Raman and
infrared (IR) selection rules.

We use the approach that we have elaborated upon for the (GaAs),m(A1As), SLs [21.
We consider the SLs as crystals with an enlarged unit cell compared with that of the parent
materials (GaN and AIN). The structure of SLs, i.e., a space group G and an arrangement
of atoms over the Wyckoff positions in a primitive cell, depends on the growth direction
and numbers of monolayers (m, n) of constituent materials in the formula unit. For each
direction of growth, these SLs constitute several crystal families specified by different space
groups. Within each family, the crystals have the same space group but differ from each other
by an arrangement of atoms over the Wyckoff positions. Thus, from the crystallographic
point of view the SLs with different numbers of monolayers m and n are distinct crystals,
even those belonging to the same family. Such a dependence of the SL crystal structure on
the numbers of monolayers strongly influences its phonon states.

Bulk GaN and AIN single crystals exist in two modifications with the zinc-blende struc-
ture (space group T2) and wurtzite structure (space group C4v). The (GaN),,(A1N), SLs
grown from zinc-blende parent GaN and AIN crystals are isostructural with the
(GaAs),m(AlAs), ones considered in detail in [21. Therefore, from the point of view of
symmetry, the results of the analysis of (GaAs),m(AlAs), can be directly applied to the
zinc-blende (GaN),m (AIN), ones. Below, we analyze the SLs formed from wurtzite parent
materials (GaN and AIN) grown along the sixfold screw axis. When analyzing the SL
structure, we adopt an approximation that the atoms in SLs are on the sites of a wurtzite
lattice with lattice constants a and c and internal parameter u (denoting separation between
anion and cation sublattices) being averages of the corresponding parameters of GaN and
AIN. The approximation is reasonable since the differences in the u, a, and c parameters
of GaN and AIN are less than 1.5%, 2%, and 4%, respectively. Taking this approximation
into account, the coordinates of all the atoms in the lattice are well defined. As a result, we
can determine both the space group and the atomic arrangement over the Wyckoff positions
for a SL with arbitrary numbers of monolayers m and n.
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Fig. 1. The primitive unit cells of the (GaN)I(AIN)I and (GaN)I(A1N) 2 [0001] SLs and the
corresponding BZ. The Wyckoff positions are given in parentheses together with the atoms.

Our analysis is valid for a SL made of two binary materials with a wurtzite structure
and an identical cation or anion. If the difference in the lattice parameters between both
materials cannot be neglected, our analysis remains valid at least for pseudomorphic SLs.

We have determined that the wurtzite (GaN),,(A1N), SL' grown along the [0001 1 di-
rection form two families with space groups C4 and C4 (hexagonal Bravais lattice) cor-
respoding to odd and even values of m + n, respectively. The crystal structures of typical
representatives of these two different families are presented in Fig. I together with the
corresponding Brillouin zone (BZ). For odd values of m + n, the nonsymmorphic space
group C4 of the SL is that of the bulk, the sixfold screw axis being conserved, whereas

for even values of m + n the improper translation (00l) is lost with the sixfold screw axis
being replaced by the threefold rotation one. The symmetry of the latter family is described
by the symmorphic C'v space group. The atomic arrangements over the Wyckoff positions
for both SL families are shown in columns 1-4 of Tables I and 2. The numbers preceding
the chemical element symbols denote the number of such atoms at the Wyckoff positions
listed in column 5 together with their coordinates and site symmetry groups.

Next we obtained the phonon symmetry in the (GaN), (A1N)n SLs using the method
of induced band representations of space groups [3 1. The results are presented in Tables I
and 2. The symmetries of phonon modes at the symmetry points of the BZ are given by
indices of small irreducible representations (irreps) (columns 7-9) induced by those irrreps
/3 (column 6) of site symmetry groups according to which the local atomic displacements
(x, y, z) are transformed. (The labelling of small irreps follows [4-1).

The sets of normal modes at the symmetry points of the BZ are obtained by summing
up contributions of all the atoms in the primitive cell. As a result, for the SLs with C4 we
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Table 1. Phonon symmetry in (GaN),,(AIN), SLs with the space group Ch.

Atomic arrangement F K M

m=1 m=2 m=2s+l m=2s q /3 (000) 10 (0

n=1 n=2 n=2t+1 n=2t C3v C3  Cs

IGa +-Ga '-Ga lb al (z) 1 2 1

1Ga IAl "-tAl LAI (z) e(x, y) 3 1,3 1,22 2 (3 3
IN 2N 2+2 LN "rN C

22

1Ga "--Ga LGa Ic al (z) 1 3 12 2

1 Al IAI n 1Al nAI 2 e(xzy) 3 1,2 1,22 2 7 7 Z
IN 2N 12+2N m+'N C3

2 2 n N

Table 2. Phonon symmetry in (GaN)J,(A1N), SLs with the space group C4.

Atomic arrangement F K M

m=I m=I m=2 m=2s+l q /3 (000) (1o) (0oo)
n=2 n=4 n=3 n=2t C6v C3v C 2v

2Ga 2Ga 4Ga 2mGa 2b al (z) 1,4 3 1,4

4A1 8A1 6A1 2nAl (i2z) e(x,y) 5,6 1,2,3 1,2,3,4
(3 3

6N ION ION 2(m + n)N C 3v

have

F - F = Fopt + Fac = 2(m + n)(17 + F4 + F5 + 16), Fac = Fl + F 6 ,

K -* 2(m + n)(K1 + K 2 + 2K 3),

M -* 2(m + n)(2M, + M 2 + M 3 + 2M 4 ). (1)

whereas for the SLs with C' symmetry the sets of normal modes are3v

F - F = Fopt + Fac = 2 (m + n)(F1 + P3), Fac = F] + F 3,

K -* 2(m + n)(K 1 + K 2 + K 3)

M -* 2(m + n)(2M1 + M2). (2)

Below, for the BZ-center phonons we give the correspondence between the two com-
monly used sets of irrep notations together with JR-active components and non-zero terms
of the Raman tensor shown in parentheses:

C4vF = A (z; xx, yy, zz), F4 = BI (silent), F 5 = E 2 (xx, yy, xy),

F6 = E I(x, y; yz, xz);

C Fv 17F = A(z; xx, yy, zz), F3 = E(x, y; xx, yy, xy, yz, xz). (3)

From Eqs. (1)-(3) it is seen that in the C 4 SLs there exist the EI modes that are Raman
6v

active in the xz and yz polarizations and nonactive in xx and yy polarizations, whereas
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Table 3. Numbers of Raman and IR active modes in wurtzite (GaN),, (AIN), SLs.

m±n bulk 2 3 4 5 6 m +n (odd) (C4v) m +n (even) (C1v)
Raman 4 6 16 14 28 22 [6(mr+n)-2] [4(mr+n)-2]

IR 2 6 10 14 18 22 [4(me+n)-2] [4(me+n)-2]

on the C~v SLs all modes are Raman active in the xx and yy polarizations. Therefore,
in analyzing Raman spectra it is easy to distinguish SLs with Civ and C4. Thus Raman

scattering can serve as a test of SL quality since it is sensitive to a change of the SL period
within a monolayer. Analyzing Eqs. (1)-(3) it is interesting to notice that, when increasing
the number of monolayers (m + n) in the formula unit, the number of Raman-active modes
increases nonmonotonically. The results are summarized in Table 3.

It is seen that the numbers of Raman-active modes are governed by different equations:
[6(m + n) - 21 and [4(m + n) - 21 for the SLs with C4 symmetry and Clv symmetry,
respectively. As a result, when adding one monolayer to a SL with an odd m + n value,
the number of Raman-active modes decreases. At the same time, the number of IR-active
modes is given by the same equation [4(m + n) - 21 for both SL families, i.e. it depends
monotonically on the m + n value.

Thus, the (GaN)m(AIN)n SLs should be considered as crystals specified by their own
space group rather than a simple superposition of bulk parent materials. We have obtained
that the SLs belong to two crystal families specified by space groups C'v and C43 d 6v, depending

on whether m + n is even or odd. The dependence of the SL point symmetry on the numbers
of monolayers leads to drastic changes in the symmetry of phonon states and selection
rules. As a consequence, from polarized Raman spectra one can easily distinguish the SL
belonging to different families. Finally, a spectacular property of the (GaN),, (AIN), SLs is
a nonmonotoneous dependence of the number of Raman-active modes on m + n, whereas
the number of IR-active modes increases monotonically.
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