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Effective-mass approximation for electrons in ultrathin heterolayers
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Abstract. It was shown that the usually employed model of rectangular potentials in the effective-
mass equations generally fail for ultrathin layers, of width of the order of the lattice constant.
There are additional terms, which play minor role for thick quantum wells and barriers, that may
have drastic influence on electron states in semiconductor nanostructures with ultrathin layers. The
terms are defined with details of the microscopic structure of heterointerfaces. It was shown that
allowance for these terms may turn a barrier layer into an effective quantum well binding electrons,
and vice versa.

Presently the progress in crystal growth technology allows to compose high-quality het-
erostructures containing ultrathin layers, of width of the order of the lattice constant a,
and experimentally investigate the electron states in such structures (see e. g. [ ]). The
effective-mass approximation (EMA) based on the envelope-function method is not ap-
plicable for description of electron states in quantum wells (or barriers) of width of the
order of a is a commonly held view (see e. g. [ ]). On the other hand, it is received that
EMA works "surprisingly well" for nanostructures composed of thick layers even with
atomically abrupt heterointerfaces (see e. g. [ 1). Accepting these standpoints, one still
may set at least two questions: "What are the reasons leading to the first statement?" and
"What is the accuracy of EMA when it is used to consider electron states in a quantum well
of some width L?" The main goal of the work is to answer these questions and formulate
envelope-function equations applicable for ultrathin heterolayers.

In [ ] it has been shown that the usually employed model of rectangular potentials
(just a set of Heaviside step-functions 0(z - zi)) and position-independent effective mass
parameters in the effective-mass equations describing electron states in semiconductor
nanostructures may be used as a zero-order approximation, with the small parameter ak,
where 1/k is the characteristic size of the envelope function. Thus the only input parameters
needed to solve the problem of electron states within the accuracy are the bulk effective
masses of one of the constituents and the band offsets. The EMA of such grade of accuracy
does not allow to describe some fine effects like 2D Brillouin zone-center mixing of light
and heavy holes in (001) A3B 5 nanostructures, mixing of different valleys induced by
broken translation symmetry of the structures, etc. But for eigenvalues of the electron
states it provides one with an approximately correct solution. This takes place only for
heterostructures composed of layers of width L >> a each.

It is evident that the rectangular profile of the heterostructure potential is an approxi-
mation. As the width of the layers decreases, the number of atoms in the layers become
comparable with the number of heterointerface atoms, and the simple model will inevitably
fail even for the eigenvalues. The detailed microscopic structure of the heterointerface is
unknown. So it is desirable to describe it with a set of a few parameters that should be taken
from the experiment along with other parameters like effective masses and band offsets.
Of course, the parameters will definitely depend on the heterostructure growth process, but
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similar situation exists for the band offsets: the heterointerface dipole may affect it consid-
erably. From this point of view the properly constructed EMA that takes into account real
heterointerface structure, being still very simple and allowing plain inclusion of external
potentials, would have no drawbacks when compared to other empirical instruments like
tight-binding or pseudopotential methods [] .

The appropriate solution to the problem may be found if we pay attention to the first-
order EMA in small parameter ak that allows for microscopic structure of heterointerfaces
(we considered lattice-matched A3B5 materials only). This approximation grade will play
a role of the basic EMA for structures with ultrathin layers. The structure of the proper
equations is the following. The kinetic energy operator has its usual bulk form, but the ef-
fective potential energy consists of the "usual" rectangular term and some Dirac 6-functions
at the heterointerfaces. For example, for conduction band F-states in a symmetric quantum
well (or barrier) of width L it has the following form:

U, (z) = AU, [0 (z) - 0 (z - L)I + di [6(z) + 6(z - L).(1)

Here A U, is the band offset, for the barrier A U, > 0 and for the quantum well A U, < 0, and
the parameter d, is defined with details of the microscopic structure of the heterointerface.
This parameter may be roughly estimated as dl - aAU,. For its experimental evaluation
it may be important that di should take different values for different nanostructure growth
crystal orientations. To illustrate this, we will consider its microscopic structure. If we
put down the potential of the heterostructure with a single heterojunction in the following
model form [1:

U(r) = U, (r) + G(z) [U2 (r) - U, (r)= U1 (r) + G(z)3U, (2)

where U1 (r) and U2 (r) are the periodic potentials of the semiconductors forming the
heterojunction, and G (z) is the form-factor appearing like a smeared step-function (Oz is
the growth axis), then

+00

di= AU, f (G (z) - 0 (z)) dz

+00

(c 1U cos (Kjz) Ic) dG(z)
j=:I,:2,:3... Kj f sin (Kiz) dz, (3)

where I c) is the periodic part of the band edge Bloch function of one of the materials (from
(2) it follows that AU, = (c I 6U I c)), and value of K depends on the heterostructure
growth crystal orientation:

I 4 7r/a, Oz 11 [0011;
K= 47r,1/2/a, Oz 11 [1101; (4)

27r 1_3/1a, Oz 11 [11111.

The effective potential energy written in the form (1) may be used both for thick and
ultrathin layers. In the former case the term proportional to di plays a role of a small
correction, but in the latter case this term is important, and as Lk, << 1, the potential
energy may be written in the form where only one parameter describes both the usual and
interface contributions:

U,(z) = b,6(z - L/2), (5)
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where
bi = 2d1 + AUcL. (6)

Phenomenologically such form of the potential energy of ultrathin quantum wells has beed
proposed to use in [] .

The sign of dl has nothing in common with the sign of AUG, and, as a consequence, it
is possible that while the potential of a thick layer does not produce a bound state (that is
AU, > 0), there will be such states in a similar structure with an ultrathin layer (so that
bI < 0).

In conclusion, we have shown that the model of rectangular potentials in the effective-
mass equations generally fail for ultrathin layers, of width of the order of the lattice constant.
The reason of this lies in its over-simplified treatment of the heterointerfaces. Allowance for
additional interface potentials may have drastic influence on eigenvalues of electron states in
such nanostructures. These interface potentials are defined with details of the microscopic
structure of heterointerfaces as well as the heterostructure growth crystal orientation. The
potentials may reveal themselves in the following: it is possible that while the potential of
a thick layer does not produce a bound state, there will be such states in a similar structure
with an ultrathin layer, and vice versa.

The work was supported by RFBR-INTAS (No 95-0849), RFBR (No 99-02-17592) and
Federal Program "Physics of Solid State Nanostructures" (No 96-1019).

References

[1] R. Schwabe et al., J. Appl. Phys. 77, 6295 (1995).
[2] D. M. Wood and A. Zunger, Phys. Rev. B 53, 389 (1996).
[3] M. G. Burt, J. Phys.: Condens. Matter. 4, 6651 (1994).
[4] E. E. Takhtamirov and V. A. Volkov, Phys. Low-Dim. Struct. 1/2 (1999) (to be published).
[5] M. Di Ventra and A. Baldereschi, Proc. ICPS-23 (Berlin 1996), World Scientific, 1996, p. 1719.
[6] V. A. Volkov and E. E. Takhtamirov, Usp. Fiz. Nauk 167, 1123 (1997) (Physics-Uspekhi 40,

1071 (1997)).
[7] 1.Yassievich and U. R6ssler, J. Phys.: Condens. Matter 6, 7927 (1994).


