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Virtual-tunneling-assisted vertical conduction
in superlattices with intentional disorder
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Abstract. A new mechanism of vertical conduction in superlattices with intentional disorder is
discussed. We show that at low temperatures the conductance of these structures can be mostly
determined by phonon-assisted transitions between the second-nearest wells in the vicinity of the
well with the highest size-quantization level. Such transitions involve virtual transitions to the state
of the intermediate well and are characterized by a low activation energy and specific dependence
of the vertical conductance on the scale of disorder.

1 Introduction

Superlattices with intentional disorder (SLID) and multiple quantum well structures, in
which disorder was introduced by random controlled variations of the well widths in the
process of structure deposition, were first discussed in[ ] and were experimentally realized
in , ]. Vertical conduction (in the direction of the SLID growth axis) in such structures
was studied by optical methods, in particular, stationary and picosecond luminescence spec-
troscopy, and also by direct measurements of the vertical conductance. The conductance
measurements for Si-doped GaAs/GaA1As SLID revealed some unusual features [ , ].
Thus at low temperatures the temperature dependence of the conductance was practically
nonactivated (quasimetallic) even for structures with large disorder, namely, when the width
of the distribution of size quantization levels exceeded the estimated miniband width. Even
though the Coulomb fields arising from the electron redistribution between the wells can
give rise to an appreciable suppression of disorder (narrowing of the level distribution) [ ],
the explanation of the relatively weak temperature dependence of the conductance still
remains problematic.

The wave functions of electronic states in SLID can be written in the form , kj, =

NUj(z) exp (ikl p), where N is the normalization factor, z is the coordinate in the SLID
growth direction, p is the in-plane position vector, Ux (z) is the eigenstate corresponding to
the solution of the one-dimensional problem with the potential V (z) = Y-3n V, (z) describing
the modulation of the conduction band edge, and V, (z) is the potential of the n th well (we
set Vn (z) = 0 in the barrier regions). The functions UX (z) are localized and for small
overlap of wave functions of the neighboring wells, we can use the basis of "atomic-like"
wave functions localized at the corresponding wells. Since for the structures of the type
studied in [ ] the contributions >from higher subbands are negligible, we can take only the
lowest subband into account and write Xý = n. For SLID the vertical conduction is usually
controlled by phonon-assisted tunneling between neighboring wells. As in the standard
hopping theory (e.g., see [ , ]), the low-field problem can be reduced to the equivalent
resistance network, with resistances expressed in terms of resulting transition rates between
the wells (the difference from the standard hopping problem is that we have to sum over
the initial and final states of the wells). Thus, for the resistance Rnn, connecting the wells
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n and n' we have
R_ = (e 2/kT) ) n,,kf1( -fn',,), )

k1 ,k'1

where kll is the two-dimensional momentum in the well plane, Wfk1,n k' is the probability

of phonon-assisted transitions from the state nk'l to the state nkll and ,fk1 is the equilibrium
average occupation number of the state nkll. If the higher level (say, En) lies above the
Fermi level /t, then (for E, - /t >> kT) we have R,,, = R0 exp { -(En - /t)/kT}, where
the preexponential factor R0 depends on the overlap of the wave functions of neighboring
wells and only weakly depends on energy and temperature. In the nearest-neighbor ap-
proximation, the network is quasi-one-dimensional, and its resistance is given by the sum
of series resistances connecting of the neighboring wells of the chain. Clearly, if the scatter
of the energy levels is greater than the miniband width and kT, then the total resistance is
determined by a critical well (or by a small number of critical wells) with adjoining largest
resistances. These resistances exponentially depend on temperature and it follows that the
temperature dependence of the total vertical conductance is activated, with the activation
energy determined by the position of the highest energy levels relative to the Fermi level.
However, with lowering temperature the vertical conductance can be controlled by parallel
shunt resistances corresponding to second-neighbor phonon-assisted transitions. In fact,
the critical resistances exponentially increase and the level separation for transitions be-
tween wells lying on different sides of the critical one (and hence the activation energy)
is typically smaller for these transitions. We shall see that the most probable transitions
involve virtual intermediate-well states.

2 Probability of second-neighbor phonon-assisted transitions via virtual states

Let us consider a three-well configuration representing the critical region consisting of the
critical well 2 with a high level E 2 lying above the Fermi level and two adjacent wells I and 3
with lower levels. Next, let un (z) and En be the wave functions and energies corresponding
to the solution of the one-dimensional problem with a single n th well (we assume that
E2 > E3 > El). Taking the overlap into account, we can construct the hybridized
wave functions corresponding to the solution of the three-well problem. Thus, for level
separations exceeding the transfer integrals tr, = f dz U. (z) gn (z) un (Z), where f'n (z) =
Y-,On' V,, (z), the lowest energy state is mostly localized at well I and the corresponding
wave function is

U1 (z) = N 1{ul (z) + C12U2(Z)}, (2)

where N1 is the normalization factor and c12 = t12/(E 2 - E1 ). Here we have omitted
the transfer integrals between wells I and 3 and as usually neglected the nonorthogonality
integrals with the functions u, (z). Similarly, we can write out the expressions for the wave
functions U2 (z) and U3 (z) localized at the wells 2 and 3.

The phonon-assisted transition probability, which involves the spatial displacement
between wells I and 3 is expressed in terms of the matrix element

:. Hkllk'
/3kIX 1 k= f dzJ (z)lephgU3 (z)f kk' klk'

= NIN31CI2 dzU2(Z)Hpkl U3(Z) + C32 dzu I(z)H ph U2(z)}, (3)SN 3 d2 Hph 3 (),ph
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where He kp' = fdp exp {i (k I - k'l)P} Hph and H,,ph is the Hamiltonian of the electron-

phonon interaction.
Expression (3) describes the amplitude of the transition between wells I and 3 as the sum

of contributions of the two channels, the first one corresponding to the succession of virtual
tunneling from I to 2 succeeded by phonon-assisted transition from 2 to 3 and another one
corresponding to phonon-assisted transition from I to 2 succeeded by tunneling from 2 to 3.
Note that for our system the probability of direct phonon-assisted transition from I to 3 is
small compared to that of the process described by Eq. (3). In fact, the integrals involving the
functions uI (z) and u3(z) are proportional to the overlap factor exp {- a(2w + L)}, where
a is the inverse wave function decay length in the barrier region, w is the barrier width
and L is the well width. On the other hand, the product of the overlap factors appearing
in Eq. (3), exp (-2aw), is much greater so that for exp (-ceL) << I the probability of the
direct transition from I to 3 is negligible. This is in contrast to the conventional situation
in the problem of hopping between localized states, where usually the probability of direct
phonon-assisted transition between distant sites is much larger than that for transitions
involving virtual states.

The shunt resistance R 13 for the processes involving virtual states is defined by (1), where
the transition probabilities are expessed in terms of the modulus of the matrix element (3)
squared. Provided that (E3 - E1 ) > kT, we obtain that the conductivity is activated with
the activation energy E3 - /t, which is smaller than the activation energy E2 - /t for the
conduction mode with nearest-well transitions in the critical region. Another difference
between the nearest-well and distant-well conduction modes is a different scaling behavior
as the disorder energy (the width of the level distribution) is varied. As follows >from
the corresponding dependence of c12 12, the preexponential factor of the conductance is
inversely proportional to the disorder energy squared whereas the activation energy scales
as the disorder energy. Note that the usual experimentally studied structures with the
number of the wells of the order 100 [ ] are mesoscopic and can have widely fluctuating
conductances for various realizations of the size quantized level distribution. The scaling
behavior of the conductance can, however, be checked for these structures if one uses series
of structures similar to those described in [ ] with different disorder energies for the same
random realization.

3 Discussion

The scaling behavior of the preexponential factor of the conductance is expected to become
evident in the case of small activation energies. The activation energy can be small if the
energies EI, E3 for the states localized on different sides of the critical well lie below the
Fermi level. Actually, the levels El, E3 can correspond to hybridized states of several wells
(clusters) rather than to individual wells adjacent to the critical one. If the miniband width
for the corresponding regular SL (or the transfer energy) is not too small compared with the
disorder energy, then the average number of sites in the clusters is sufficiently large; then
for the most probable realization of disorder the lowest energies of hybridized states of the
clusters adjoining the critical well lie below the Fermi level. In this case the nonactivated
temperature dependence of the vertical conductance is expected.
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