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Theoretical possibility of making carbon nanotubes based nanoelectronic devices with
strong non-linear and multifunctional electronic properties is discussed in the report. It may
be realised by joining nanotubes of different chiralities and consequently electronic char-
acteristics (from typical semiconductors to semimetals, see for example [1]). Nanotubes
of distinct radii and chiralities may be joined through a connecting surface representing a
carbon structure packed by penta-, hexa- and heptagons [2].

In the literature [3] to analyse theoretically quantum current in two nanotube junction
the direct diagonalization of electronic Hamiltonian of finite carbon cluster with junction
structure containing 700 atoms is performed. Then the eigenvectors obtained are used to
calculate the electric current under a voltage applied. Similar investigations of the current
in three or more nanotubes junctions are absent in the literature. To investigate electric
current in nanotube’s junctions we use a phenomenological approach allowing analyse the
current states in the nanotube junctions from known electron eigenfunctions of isolated
nanotubes and presupposed nature of transition amplitude.

Let there are N single-layer and sufficiently long carbon nanotubes of different chiral-
ities and radii connected between itself through transition surface area hereinafter named
“connection area” (see Fig. 1). The transition amplitude between quantum states of different
nanotubes is assumed to be small, that allows us to neglect the alternative electron transi-
tions between chosen two states via interstitial ones. Hereinafter we denote the m-electron
wave functions and quantum states energies of nanotube with number y as | k, m, n, y) and
Epmny correspondingly, where n = 1, 2 is zone number in expression (1) for the signs (—)
and (+). The -electron states of the ideal nanotube are classified by two quantum numbers
k, m, hk is the momentum of the electron along the axis of the cylinder, fim is the angular
momentum, £ is Planck’s constant. The expressions for the 7 -electron wave functions of
the ideal nanotube in tight-binding approximation may be found in our previous work [4],
here we give only expression for the electron energy
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Hoi k.m = Bo + exp(—imepy — ikz2)(B1 + Baexp(—ime; — ikzy),
where E, is the diagonal matrix element of the Hamiltonian, By, 81, B, are the nonzero
matrix elements based on the nearest neighbours atomic orbitals, the difference between
the matrix elements depends on parameter a /R, where a is the nearest neighbour distance,
R is nanotube’s radius.
Apply at nanotube’s ends electric potentials ¢, where y = 1, ... N (see Fig. 1), and
suppose that the potentials in the nanotubes are constants, all voltage drop is only in the
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junction region. Transition matrix element Tkmny

nanotubes | k, m,n, y) and |k, m’, 7', ') (see Fig. 2) is assumed to be small. Suppose
that quantum numbers correspond to electron moving to the contact, whereas k', m’, n’, 3’
correspond to moving from the contact.
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Fig. 1. Nanotube’s contact area.

Using Fermi’s formula for the transitions in the continuous spectra per unit time (see
for example [5]) and taking into account multi-channel character of the electron transitions
we obtain for the quantum current in the tube with number y following expression
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S is the Fermi-Dirac function, D, (E) is partial electronic states density in the tube y,
equal to the number of states per unit energy interval on the equidistant line number m (see
Fig. 2) with zone number n, ¢ is the absolute value of electron charge. Function Dy, (E)
may have singularity at the energy E,,,, where the electron velocity along the tube axis
become zero and partial density disconverges as |E — Ey,|~'tV%, j =1,2,3,.... In
expression (2) transitions between quantum states |k, m,n, y) and |k, m’, n’, ') satisfy
the energy conservation low Egmny +e@y = Eppnry +e@yr; 1y, 18 the chemical potential
of isolated tube y. For the ideal nanotubes the chemical potentials are the same and equal
E, but in the case of doped or defective nanotubes are different.

The most simple analysis of the expression (2) may be performed for two nanotubes
connection (N = 2). Supposing that chemical potentials of both tubes and potential ¢,
are zero, denoting the potential difference g2 — ¢ through V, we obtain from (2) at zero
temperature

J(V)= — Dypni (E) D2 (E + eV)dE. 3)
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Integral (3) may disconverge if singularities of functions D,,1(E) and D2 (E +
¢V') coincide, that appear for discrete voltages with step of eV equal to energy distance

(

Fig. 2. Allowed states in the Brillouin zone for ideal nanotubes (6,0) and (6,2). The curves are
level curves of the w-electron energy. The arrow denotes a quantum transition between nanotube’s
states.
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E.w+1 — E. between singularities of partial electron density function, depending on
parametera/ R. More detailed analysis of the integral (3) disconvergency requires analytical
investigation of the matrix element square dependence on the energy. If one of the joined
tubes is metallic and the other has an energy gap then the current (3) is zero in the interval
eV equal to the energy gap width. Change of the voltage sign leads to change of zone
numbers of electron transition. The last may be cause of nonsymmetric current—voltage
characteristic 7(V) because transition matrix element depends on the zone numbers the
transition is realised between.

We discussed briefly peculiarities of two nanotubes junction current — voltage char-
acteristic (V). In the many tube junction additive contributions from the different pairs
of nanotubes make analysis of expression (2) more complicated, but nonmonotone depen-
dence I (V) in tubes, associated with electron states density singularities and presence of
band gaps is summarised.
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