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Anomalous magnetoconductance due to weak localization in 2D systems
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Abstract. The results of computer simulation of particle motion over the plane with randomly
distributed scatters are presented. They are used to analyse the influence of scattering anisotropy
on the negative magnetoresistance due to weak localisation. It is shown that the magnetic field
dependence of magnetoresistance in this case can be described by the well known expression,
obtained in the diffusion limit for isotropic scatternig, but with the prefactor less than unity and
breaking-phase length which differs from the true value.

Introduction

Quantum correction to the conductivity arises from interference of electron waves scat-
tered along closed trajectories in opposite directions. An external magnetic field applied
perpendicular to the 2D layer destroys the interference and suppresses the quantum cor-
rection. This results in anomalous negative magnetoresistance, which is experimentally
observed in many 2D systems. This phenomenon is usually described in the framework of
quasiclassical approximation which is justified under the condition kgl > 1, where kp is
the Fermi wave vector, [ is the mean free path. In this case the conductivity correction is
expressed through the classical probability density W for an electron to return to the area
of the order Apl around the start point [1-3].
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This expression allows to calculate the conductivity correction at an arbitrary magnetic
field [ ]. Analitical expressions are derived only for some specific cases: (i) in the diffusion
limit,i.e. at B <« By and] < I, |, -], where,, is the phase-breaking length due to inelastic
processes, and By, = <I>0/2n12, @ = mhc/e; (i) in the high-field limit, i.e. at B > By [].
To our knowledge, this problem has been solved only for the case of random distribution
of scattering centers and isotropic scattering. As a rule, these conditions are not fulfilled
in real semiconductor structures. First of all, in semiconductors the scattering by ionized
impurities dominates at low temperatures. This scattering is strongly anisotropic, in par-
ticular in heterostructure with a remote doping layer. Besides, the impurity distribution is
correlated to some extend due to Coulomb repulsion of the impurity ions at growing tem-
peratures. In the present work the role of scattering anisotropy in the quantum correction

to the conductivity is investigated through a computer simulation.

1 Simulation details

To find the values of the mean free path [ and probability density W in (1), we have
simulated the motion of a particle in the 2D plane with scattering centers in it. The plane is
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Fig. 1. A fragment of the lattice with scattering centers. Fig. 2. The dependences Ao (b) =
Lines show closed trajectories. In the inset the angle do (b)— b0 (0) for the isotropic (dashed
dependences of scattering probability for the isotropic curves) and anisotropic (solid curves)
(curve i) and anisotropic (curve a) scattering mecha- scattering mechanisms, which are cal-
nisms are presented. culated with the angle dependences of
scattering probabilities presented in the
insetin Fig. 1. Dotted curves are the re-
sults of diffusion approximation (3).

a 3000 x 3000 lattice. The scatters are randomly distributed in the lattice sites. The whole
scatters number is 2 x 10*. Every scatter covers seven lattice parameters in diameter. The
start point of particle motion is chosen in a scatter near the centre of the lattice. We suppose
the particle to move linearly between two sequential collisions with scatters (Fig. 1). The
collisions change the motion direction according to given angle dependence of scattering
probability. A trajectory is considered to be closed if after a number of collisions 7 < npax
it passes near the start point at the distance less than d /2. Since d has to be small enough, we
choose d of about the scatter diameter. We assume that the particle never returns to the area
of the start point at n > nyax = 1000 or when it escapes the lattice. An estimation shows
that both assumptions introduce the error in do less than one percentat y = [/[, > 0.01.

The simulation has been carried out for two different scattering mechanisms: isotropic
and anisotropic. For the isotropic scattering corresponding to a short-range scattering
potential, the scattering probability does not depend on the scattering angle (the curve i in
the inset in Fig. 1). For the anisotropic scattering we have used the angle dependence of
scattering probability presented by the curve a. It is close to that in heterostructures with
a doped barrier, where impurities are spaced from the 2D gas. The curve a corresponds,
for example, to the 2D structure with impurity density of about 102 cm~2 and a spacer of
50 A thick.

To calculate the conductivity correction in a magnetic field, we have modified the
expression (1) by including the magnetic field in it according to a standart procedure. The
final expression for the conductivity correction in the magnetic field can be written as:
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where summation runs over all closed trajectories among a total number of trajectories N
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Fig. 3. The results of fitting of simulated curves (solid and dashed curves in Fig. 1) by expression
(3). Dashed lines in upper figures correspond to v, = y.

(N = 106 in our calculations), » = B/By, Gg = e2/2n2h, S; and [; stand for the area
and length of the i-th trajectory, respectively, the exponent accounts for the phase breaking.
Note that in (2) [ denotes the mean free path connected with the transport relaxation time.

2 Results and discussion

The results of simulation, obtained for different y values, are presented in Fig. 2. Let us
consider, at first, the results for the isotropic scattering (dashed curves). They are in a
good agreement with the results of numerical calculation carried out beyond the diffusion
limit []. This lends support to the validity of the method used. Here the results of
calculation in the diffusion limit (b « 1, y <« 1), obtained through the well-known

expression
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are shown too. As is clearly seen, the conditions, under which the expression (3) works
well, are very rigorous: even for y = 0.01 and b < 1 the formula (3) gives evidently larger
value of Ao (b) than that in our simulation.

The solid curves in Fig. 2 are the results of our simulation for the anisotropic scattering
mechanism. The closeness of these results to those, obtained for isotropic scattering, stands
out. At first glane it seems to be surpising. The introduction of anisotropy in scattering
process decreases the probability of returning to the start point area, because the scattering
for small angles dominates in this case and in the average the particle moves to greater
distance from the start point after each collision. As is seen from (1), the decreasing of W
has to lead to decreasing in 0. However, this decreasing is compensated by the increasing
of transport length [, which is averaged with the weight (1 — cos(f)) when integration runs
over the scattering angle 8. Thus, the introduction of anisotropy of scattering does not
dramatically change the negative magnetoresistance (at least up to b = 5).

One can now attack the results of simulation as experimental ones. Let us describe our
curves by expression (3) in the usual fashion. We have introduced a numerical multiplier
(so-called prefactor) in (3) and used it and y as fitting parameters. The results of such data
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processing are presented in Fig. 3. The curves labels show the magnetic field ranges, in
which the fitting procedure has been carried out. In spite of strong difference between the
simulation results and those given by (3) (see dotted and other curves in Fig. 2), the fitting
value of yg is very close to y, used in our simulation for both isotropic and anisotropic
scattering mechanisms. The difference between y and yy; is less than 10% for the isotropic
scattering and 40-50% for the anisotropic one. The value of prefactor is less than 1 and
decreases with increasing y .

Thus, (i) the use of expression (3) to determine the phase-breaking Iength (or time)
from the magnetic field dependence of anomalous magnetoconductance in semiconductor
structures, where scattering is anisotropic, can give the error of about 40-50%, (ii) the fact
that the prefactor is less than 1 can be related not only with e-e interaction influence as it is
frequently supposed, but with poor fulfilment of the condition [ </, and strong anisotropy
of scattering as well.
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