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Coulomb drag in double layer systems with correlated disorder
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Abstract. We study the effect of correlations between impurity potentials in different layers on
the Coulomb drag in a double-layer semiconductor electron system. It is found that for strongly
correlated potentials the drag in the diffusive regime is considerably enhanced as compared to
conventional predictions. The appropriate experimental conditions are discussed, and the new
experiments are suggested.

Introduction

Over the past decade the frictional drag in double-layer two-dimensional electron sys-
tems has been a subject of extensive experimental [ I and theoretical [ , ] stud-
ies. This phenomenon is manifested in the appearance of current 12 or voltage V2 in
the "passive" layer 2 when the applied voltage V1 causes the current I] to flow in the
"active" layer 1. The strength of the drag is characterized by either transconductivity
o-21 = (I2/Vi)v 2=o or transresistivity P21 = (V2/I)12=0, which are related one to another

as P21 (o- - o11'22 - o112o21 o21-1 2 where Orii are the intrinsic conductivities
of the layers.

In the absence of tunneling, the drag arises due to interlayer momentum transfer medi-
ated by inelastic scattering (mainly, Coulombic) of carriers that belong to different layers.
In the conventional theory [ 1, the carriers in each layer are scattered by their own impurity
potentials. As a result, the processes contributing to o-2i can be understood in terms of cou-
pling between independent thermal density fluctuations in different layers. The phase space
available to the thermal excitations is small and limited by energies wo < T. Therefore, the
drag effect rapidly vanishes with decreasing temperature. For instance, P21 (X T2 (T 2 In T)
in a clean (dirty) normal metal [ 1 and P21 Oc T 413 for composite fermions in double-layers
of electrons in the half-filled Landau levels [] . However, the recent experiments ] have
demonstrated that the transresistivity does not vanish at low temperatures.

The picture of independent impurity potentials used in Refs. [ , I is well justified in the
case of the standard experimental geometry [ 1, where two Si delta-doped layers (DDLs)
are situated on the outer sides of the double quantum well. The DDLs not only serve as the
reservoirs supplying carriers but also introduce disorder in the form of a smooth random
potential (SRP) of the ionized donors. Moreover, due to the efficient screening the carriers
in each quantum well experience only a SRP created by the nearest DDL.

Instead, one can consider an alternative geometry where a single DDL is located in the
middle between the two electron layers, so that the SRPs in both layers are almost identical.
This setup gives one an opportunity to study a new type of coherent effects in systems with
spatially separated carriers. This case is obviously beyond the conventional theoretical
description [, ].
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In the present work we investigate the influence of correlations between the impurity
potentials in different layers on the transresistivity. We focus our attention onto the case of
a long characteristic time, rg, at which the carriers feel the difference between the SRPs in
the two layers (rg >> rtr, where rtr is the transport scattering time in each layer). We show
that in this case the drag is strongly enhanced in comparison to the non-correlated situation.
This enhancement is due to a possibility of a coherent motion of carriers propagating in
different layers and feeling nearly the same random potential. As a result, the effective
time of their interaction increases considerably. This gives rise to the new behavior of the
transresistivity

on 7 4 h In (T-7rg) <<_ <<
~21 "'• 24 e2 (kFd)4 (KI) 2 ' g
peon ,• 7r4 h (Ttr'g) 2

CO2l I____ T <<Kr (2)
6 e 2 (kFd)

4 (KI)
2 ' g

Here, I = VFrtr is the electron mean free path, kF (VF) is the Fermi momentum (veloc-
ity), d is the interlayer distance (throughout this paper we assume I >> d), and K is the
Thomas-Fermi momentum. This term yields the dominant contribution to P21 within the
entire experimentally accessible temperature range, provided that the system remains in
the diffusive regime, T << rtf1. We specify the experimental conditions necessary for the
observations of the behavior described by Eqs. (1) and (2), and predict a suppression of
these regimes by a weak magnetic field.

Calculations

The new correlation effects for the transconductivity are described by diagrams with two
electron loops (one current vertex per each), connected not only by the interlayer Coulomb
interaction lines but also by the impurity lines combining into the interlayer Diffusons and
Cooperons. After the summation over electron frequencies and momenta, the non-zero
contribution of these diagrams to the DC transconductivity takes the form

,.2fDnqe D(dq) fldw JmJP.(q, w) ImA(q.wo), (3)
-- hT 2 + g1 + -1 Josinh 2 2

The quantities T, and A, are given by

TDq2 _ioW + rý I + rT - )
%,(, o) . 47r T 2

A,(q, o) = 2 [In T + )•1' - 4, (q, w) + Vf(1/2)]

where V is the digamma function, eo C 8IF is the upper energy cutoff, -re, is an inelastic
phase-breaking time, and )X21 is the effective interaction constant:

)v21 = (47r2 VF)- 1 (V21 (P - P ))p,p'•

Assuming that the screening is strong enough, Kd >> 1, and kFd >> 1, one finds Xý21
7((4kFdKd)-'.
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Evaluation of the integrals in Eq. (3) yields

c 27r 2  
__, n Tr Tg (4

3 e2 (kFr1)2[ 211 + ln(80 /T)1 2 In + -rg
at rTI << T << rtr , and

CO 87r2 h, (Trg)
2

21T' -- (5)

3 e 2 (kFl)2[X 2 1 +ln(eorg)1 2

at lower temperatures. These equations constitute our main result. Under realistic ex-
perimental conditions (see below) the value of Xý-l• is sufficiently large for one to neglect
the logarithmic terms in the denominators of Eqs. (4) and (5). Also, since the interlayer
decoherence time rg is temperature independent, the argument of the logarithmic function
in the numerator of Eq. (4) is linear in temperature provided that rg << r•. Then Eqs. (4)
and (5) reduce to Eqs. (1) and (2), respectively.

Discussion and experiments

Now let us compare these equations with the results of the standard theory [] :

conv h 7r2 ((3) 1 (T 2  (6)
-e2 16 (kFd) 2 (Kd)2  F

We see that at T << rtrI our result exceeds the conventional one: in the interval rg <<

T << rr I the correlation effects lead to the smoother T-dependence, while at T << Kg1

the prefactor of the T2 -dependence is (rtg/rtr) 2 times greater in our case.
The expression (3) resembles the Maki-Thompson correction to the conductivity of a

single-layer system [ 1. However, in that case the corresponding processes yield a small
correction to the Drude term while in the double-layer system they determine the leading
contribution to Crli. Also, in our situation there exists the temperature-independent quantity
rg resulting in a new behavior at rg << -r, and T << Kr1.

The origin of the interlayer decoherence time rg can be explained as follows. Consider
two coherent electron waves propagating in slightly different random potentials (u + 6u and
u - 6u). After passing through the distance of order of the SRP correlation length a they
acquire a random phase difference AO - (26u)vp a. This leads to the electron's phase

diffusion with the diffusion coefficient Dph = (AO) 2 VFa-1, and provides a complete loss

of phase coherence over the time rg - Dh 1 .

A perpendicular magnetic field leads to a suppression of the transresistivity, since one
has to replace rg1 by rTi = 4DeH/(hc) in Eq. (1) at rg << rT << T and in Eq. (2) at

T, r1 << rH1.
Now we discuss the experimental conditions under which the above theory applies. For

the standard geometry we have found that the condition rg >> rtr can never be satisfied as
long as Kd > 1. We note, however, that unavoidable substrate roughnesses may lead to the
correlated interface roughnesses of both quantum wells, thanks to the long-range character
of the deformation field. Then in very clean samples where the interface roughness becomes
the main scattering mechanism one can expect some coherence of the kind described in
this work to occur even in the conventional geometry.
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The situation is different for the suggested geometry with a single DDL located between
the two quantum wells. Introducing a finite width of the DDL 6 we find that the condition
rg >> rtr can be rewritten as 2(kF6) 2 << min[1, Kd1. For K - 0.02 A-', kF - 0.015 A-',

S- 10 A, and d - 400 A the above criteria are fulfilled, and there exists the regime
of temperatures described by Eq. (1). Note that it might be easier to observe this regime
in dirty samples (yet with I >> d). For I - 5000 A (which implies r7r1 - 4 K and

0.2 K) Eq. (1) yields P21 of the order of a few mQs within the entire temperature

range rr > T > T1, whereas the conventional theory would predict a rapid decay of

the transresistivity from P21 -1 mQ at T - rr I to P21 - 3pjQ at T - r'.
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