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Mechanisms of Auger recombination in semiconductor quantum wires

E. B. Dogonkine, A. S. Polkovnikov and G. G. Zegrya

Joffe Physico-Technical Institute, St Petersburg, Russia

Abstract. The principal mechanisms of Auger recombination (AR) of nonequilibrium carriers in
cylindrical quantum wires (QWRs) are investigated. It is shown that there exist two different Auger
recombination mechanisms of (i) quasithreshold and (ii) thresholdless types. These mechanisms
originate from the existence of barriers but have different nature. The quasithreshold mechanism
is caused by confinement of carriers within the region of a quantum wire which makes the quasi-
momentum conservation law approximate and enhances AR process. With increase of the wire
radius this process turns to the threshold one. The thresholdless mechanism relates to the violation
of the momentum conservation law at the heteroboundary and disappears with the radius tending
to infinity.

Introduction

There are two main processes of Auger recombination (AR) in narrow gap semiconductors.
The first of them corresponding to recombination of an electron and heavy hole and excita-
tion of another electron is CHCC process. The second CHHS Auger process relates to the
transition of a heavy hole to the spin-orbit split-off band. Contrary to bulk semiconductors,
the transversal momentum component doesn't conserve in heterostructures thus allowing
the thresholdless Auger process to appear [1, 211. In [3, 4] it was shown that there are three
types of AR processes in planar quantum wells (QWs): (i) threshold, (ii) quasithreshold
(iii) thresholdless. It is shown that in QWRs there is a similar quasithreshold mechanism
becoming 3D Auger process in the limit of a wire with the infinite radius. The AR mech-
anism of thresholdless type differs from those in a QW because there are two different
channels (i) with transfer of a large linear momentum to the excited particle (like in planar
QWs) and (ii) with transfer of an angular momentum (which is the only possible channel
for quantum dots). These channels have different dependences on barrier heights in the
conduction and valence bands.

1 Eigenstates of carriers in a quantum wire

Commonly the basis wave functions in the conduction and valence bands are taken in the
form of eigenfunctions of the angular momentum but in the case of cylindrical symmetry
it is natural to use another basis [5 1:

Is 1T), Is ,•), Ip+ 1T), Ip+ ,•), Ip- 1T), Ip- ,•), Iz 1T), Iz ,•,(1)

where Ip+) = 1/1121(x + iy)), Ip-) = 1/N/21(x - iy)). This procedure excretes eigen-
functions having definite projections of linear and angular momenta on the wire axis. In
this basis, dependences of wave functions on the z coordinat, where z-axis is parallel to the
axis of the wire, and the axial angle take a simple form. For example the eigenstate in a
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bulk semiconductor corresponding to the heavy hole is:

0
0

-2iq Jm-3/2 (kp) exp (i (m - 3/2)0)
kh Jm.-1/2 (kp) exp (i (m - 1/2)4) exp(iqz) (2)

0
-kh J,,+3 1 2 (kp) exp (i (m + 3/2)0)

,/ 2 k J Jm-1/ 2 (kp) exp (i (m - 1/2) 0)
0

(where Jn is Bessel function of the mth order). We derive boundary conditions from the
continuity of the probability flux density and, following the method elaborated by Burt [6 1,
from integrating Kane's equations across the heteroboundary that give continuity of the
following functions:

dipz m7divifr 
(3)

where ml is the mass of light hole in the case of zero constant of spin-orbit interaction [3, 41.
Contrary to situation in QWs [3, 41, the states with different parities cannot be separated
even for heavy holes. Therefore, the dispersion equations become rather cumbersome. For
example, the simplest one determining the ground state of heavy holes takes the form:

K_(khR) I K(khR) K2 (Kh R) o -((KhR)\ K2(KhR) K" (Kh R)

q' (g khK(h) K(IR - Kh kh KhRY
K K

2
k2 J- I (kihR) Ko(khR) J2 (kh R) J1(kh R)]

where k and K are the transversal momentum components inside and outside the wire
respectively, K,, is McDonald function of the mth order.

2 Matrix element of Auger recombination

The wave functions of carriers have conserved values of z-components of linear and angular
momentum. Performing Fourier transform of Coulomb potential along p and 0 coordinates
we obtain:

2,7 
00

f eimdo--+iqz 47r I,,q)(qpI)K.(qp2)D, P I <- P2 (5)
Si dz - ir2 47rK. (qp)Im(qp2), PI > P2

0 -- 0

(where Im is the modified Bessel function of the mth order). Obviously, the matrix element
of AR automatically yields conservation laws for the linear and angular momentum. We use
the approximation Vc, V, << Eg, where V, and V, are the barrier offsets in the conduction
and valence bands, respectively. Procedures of evaluating the matrix element for CHCC
and CHHS Auger processes are similar and only CHCC matrix element will be discussed
further for the sake of simplicity. For the thresholdless AR process relating to the carrier
scattering at the heteroboundary we obtain:

K o(q82 + k24)i1,(R) 0 4,(R) IR I 4-(qR) [ Eg ]

+ mKm(qR) 3 V, V-J3()V2(p)pdp. (6)
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where both the discontinuity of the wave functions and their derivatives give contribution
to this matrix element. The first term in the curly brackets, proportional to the linear
momentum q, is similar to that existing in QWs. The second one, proportional to angular
momentum m, is analogous to the thresholdless mechanism in quantum dots. For the
quasithreshold process we have:

M(2) _ 47re 2  
-R

- (q2 + 2 J /(p)1fr(p)1f2(p)1fl (p)pdp. (7)

This matrix element, proportional to 6 (k4 - k 3) in the limit R --> oc, turns to the threshold
matrix element in a bulk semiconductor. More detailed analysis of matrix elements of
thresholdless and quasithreshold types can be found in [71.

3 Rate of Auger recombination

To calculate the rate of AR in the first order of perturbation theory, the probabilities of
transition should be averaged over all initial states of carriers with appropriate weight-
occupation numbers and summed over all final states:

27r
-- h, Z (M 2 )flf 2 (I -'f3)(I - f 4)6(E 3 + E4 - - E2), (8)

kl ,k2 ,k 3 ,k4

here fl, f2 are the occupancies of the initial states and f3, f4 are those of the final states,
(M 2 ) is the sum of squared Auger matrix elements over spins of the initial and final states.
The expression for the rate of Auger process can be derived analytically from (8) but it is
rather cumbersome. It is natural to use Auger recombination coefficient C given by:

G = Cn p and G = Cp2 n

for the CHCC and CHHS Auger processes, respectively, where n and p are the I D densities
of electrons and holes. Following [3, 41 we present the coefficient of AR in the form

C = C1 +- C2, (9)

where the coefficients C1 and C2 correspond to the thresholdless and quasi-threshold Auger
processes with the matrix elements M1 and M2, respectively. For example, the thresholdless
and quasithreshold coefficients for CHCC process are:

24e 4 h3 y 4 F(Aso/Eg) k J2j(kCR)
C 1 2 E5 5 C 0 j2 ( k c t K 2 (c R )D t - K 2 ( . ) )2

K (E g V ]2 + q2R2 q2

LE9 1 4E9 (q2 + k4) 3
kf(q)

6e4 h3 /4 F(Aso/Eg) kc 0 (kR)
C K 02 E55 R j

C2)kj 5 R si2 (kfR) -+ J2(kcR) + K 2(KcR) +t- K 2 ( R))2

x((q+2k~2 sin (k~f- kh)R> ) q•

(q 2 q kf (q) ---- . ,h (11
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where

(l+x/3)(l+x) l+7x/9+x2/6 /2E2g l+Aso/2Eg
F(x) = (1 + 2x/3)(1 +x/2) (1 +x/4+x2/6) ' kf(q) = VhZy2 1 -Jr As, o/3Eg -- q2,

the angular brackets denote averaging over the heavy-hole distribution function and kc is
the transversal nmmentum component of the electron in the ground level.

4 Summary

Our analysis has shown that there exist two different AR mechanisms in semiconductor
heterostructures with QWRs: thresholdless and quasithreshold. The thresholdless AR
process has two channels. The first of them can be associated with the thresholdless AR
process in QWs and the second one can with AR in quantmn dots. It is shown that these
channels have differrent dependences on barrier heights for elections and holes in QWRs.
The thresholdless coefficient tends to zero and the quasithreshold one becomes the 3D
Auger process in the limit of a wire with infinite radius.
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