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DFB laser diode with variable diffraction grating period

G. S. Sokolovskii, A. G. Deryagin and V. 1. Kuchinskii
Joffe Physico-Technical Institute RAS, Polytechnicheskaya 26, St.Petersburg, Russia

Single-mode semiconductor DFB lasers are considered to be an optimal light sources
for optical communicational and information processing systems. DFB lasers with first
order corrugation demonstrate the best threshold characteristics. However, "classical"
first-order DFB laser has noncontrollable corrugation phase at the laser facets and,
because of this, poor single longitudinal mode operation yield.

In 1976 Haus and Shank [1] have proposed and theoretically investigated DFB laser
with tapered structure. They have shown that coupling and Bragg parameter variations
along the laser structure remove the threshold degeneracy of the 1-st order DFB lasers
and cause light generation exactly at the Bragg frequency. It is important to notice
that coupling and Bragg parameters variations can be obtained not only by the effective
refractive index variation, but by the corrugation period (A) modulation as well.

The simplest case of the antisymmetric taper DFB is the coupling and Bragg co-
efficients step at the centre of the DFB structure. Such a step can be created by the
insertion of the quater-wave section (A/4) between two equal uniform DFB structures.
Experimentally A/4-shifted DFB lasers demonstrate single-mode generation only near
threshold current and even for small pumping currents (I > lth) "spatial hole burning"
in the (A/4-shift region causes spectrum degeneration from single-mode to multimode.

To obtain DFB laser with sufficiently more uniform light intensity distribution along
the active region (i.e. with greatly reduced "spatial hole burning") we propose to use
tapered structure caused by the variation of the refractive index modulation period along
the laser structure.

Diffraction grating was created by the holographic photolitography method. Holo-
graphic photoresist exposure procedure was carried out according to the "corner"
scheme (Fig. la). The argon laser ("Spectra-physics-2020", A0 = 0.3511 pm) after
widening and spatial filtration illuminated the sample and the mirror, fixed at the 90' as
regards to each other. Interferention pattern period "A" was determined by the angle
of the "corner" turn according to the relation:

A= A0  (1)2 sin a

where a = 0 corresponds to the normal angle of the light incidence on the sample.
For the creation of the diffraction grating with variable period we propose to use the

"corner" scheme with sufficient illumination beam divergence. Generally, some grating
period variation takes place always, but usually (long distance from the "corner" to
pin-hole and small distance from the sample to the centre of the "corner") it is less than
0.01 A/cm, and the grating period is accurately given by the expression (1).

But for the significantly reduced 1, the strongly increased coordinate dependence
of the grating period is observed. The grating period dependence on the y coordinate
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(a) Lasero X - 351 nm] (b) Laser koX -351 nmr
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Fig 1. The "comer" scheme of holographic photolitography.
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Fig. 2. Grating period vs distance from Fig. 3. The approximate gain coefficients
the centre of the "comer" for the "comer" vs frequency deviations with DFB coupling as
scheme of holographic photolithography for a parameter for DFB structure with variable
Ao = 351.1 nm, ca = 46.64' and I = 40 cm. grating period.

(perpendicular to the grooves of the grating) is given by the following expression:

A- ( 1 Isina +y + sin -y' (2)
A = ,o /12- _+2yl sin a + y 2  V/12 -- y•/sinoa + y2 )

where I is the distance from the pin-hole to the centre of the "corner".
In the present work we have used x80 (F = 0.5) microobjective for the beam

widening and the 15 trm pin-hole for the spatial beam filtration. We have obtained
good quality diffraction gratings with 0.24 trm grating period, 0.1-0.15 trm corrugation
depth and up to 0.5 A/cm grating period variation.

According to [1] Bragg deviation for the tapered DFB structure is expressed as
follows: 6(y) = /3 - [(7r/A(y)]. Unfortunately the expression (2) is too complicated for
the direct substitution. It can be significantly simplified by expressing the coordinate y
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as the sum y = ZO + z. This transition must be understood as follows. The distance
from the centre of the "corner" to the considered point y is the sum of the distance
from the centre of the "corner" to the centre of the laser ZO and the distance from the
centre of the laser to the considered point z: ZO > z; I > Zo. Using this condition and

1 x
lim 1 - (3)
x-*o 1±--+x 2

and neglecting the small terms of the second order one can obtain:
71 7r

13(z) =- =- Bz (4)
A (z) A0-

where
Ao 7F 8Zo sin c

=0 =2sinc-[I- 2(Zg/1 2)] AB 312 (5)

We consider the medium with quasiperiodical corrugation of refractive index:

n(z) = n + ni cos [2 13(z)z] . (6)

The system of differential equations for coupled waves R and S in this case is as follows:

- (dR/dz) + [ca - i6(z)] R = ik(z)S

(dS/dz) + [ca - i6(z)] S = ik* (z)R (7)

6(z) = /3 - 13(z) = 6o + Bz, k(z) = ko exp(iBz2) (8)

where 6o is the Bragg deviation at the "centre" of the structure - the "effective" Bragg
deviation and ko is the "effective" coupling:

=/3 _-/3(0) = n, 7, k= 7n
c A0 'o A0  (9)

It must be noted, that the "effective" coupling and Bragg deviation are the values of
these parameters for the convenient DFB structure. Note, that at the frequency matched
to the centre of the frequency gap of the DFB laser with diffraction grating period A0,
Bragg deviation becomes the antisymmetrical function of the distance. The last means
that this case is particular and the frequency w = irc/nAo is the centre of symmetry of
the threshold gain spectrum of the DFB laser with variable diffraction grating period.

Substituting (8) in (7) one can obtain for R(z) and S(z):

R"-i2BzR' + (3B 2z 2 + i4Bz+ iB-k-O)R=0 (10)

S" + i2BzS' + (3B 22 + i4Bz-iBa--c)S= 0 (11)

where ca = c + i6 is the gain coefficient. Estimation of the gain coefficients for different
modes of DFB laser with variable diffraction grating period is the ultimate aim of this
work.

The particular solutions of (10) and (11) are:

r(z) = exp (-2) Dv(•r), s(z) = exp - D- D (-, ) (12)
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where v = ik2 / 4B, r=2zv-f - B/v-, , =2z v--B + oa/ --iB.
To obtain the gain coefficients it is possible to analyze the considered structure on

the computer or to use the perturbation approach providing the physical insight into
the behaviour of DFB structures with variable grating period. In the limit of low-gain
and high Q the threshold gain is inversely proportional to the external Q-factor of the
resonant transmission mode [1].

2ca = W (13)
Vg Qext

where wo is the frequency of the resonant mode, vg is the group velocity, and external
Q-factor is: 1I-- w0W (14)

QeXt WoOW

where P0 is the output power of the resonant mode according to the first order of
perturbation approach, and W is the energy accumulated by the structure:

z=L/2 I L12

P = Ro +ARI2 - ISo + AS12 , =-- Ro 2 - ISo12 dZ. (15)
z=-L/2 VgJL/2

In our case the grating period variation is small in comparison to the step of diffrac-
tion grating. Hence, the amplitudes R and S variation from these amplitudes for the
uniform grating is small. Thus we can put the zero-order amplitudes R0 and So equal
to the solutions for the convenient DFB laser with zero loss:

So = ±A sinh [Y(z± L)], Ro = A cosh [_y (z--)1, z<O (16)

where -y = Ikol is constant along the structure.
Using (6)-(9) and IRol ; ISol, one can get:

koLL (17)
-L = sinh(Iko--L)--klL 1 +(

The resonant frequencies and thresholds for the modes of higher orders can be

obtained by the same procedure. In this case /3 = S62 1 ko 2 and

K 2m 7r 2 ( 82)
L kO I L) 6L=± (2 ) +(IkOIL) 2 . (18)

Gain coefficients of DFB laser with variable period of diffraction grating defined by
(17)-(18) with feedback efficiency k0L as a parameter are represented in the Fig. 3.

The above calculations shows that the proposed DFB laser diode with variable period
of diffraction grating has the single-frequency gain spectrum like a A/4 laser and uniform
light intensity distribution like the convenient DFB laser.

The work was done under the financial support of RFBR (grant No. 96-02-17864a).
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