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Phonon generation by current-carrying nanowires

Y M. Galperintj, V. L. Gurevichj and H. Totlandt
t Department of Physics, University of Oslo,
P. 0. Box 1048 Blindem, N-0316 Oslo, Norway
$ Solid State Physics Department, loffe Institute, 194021 St. Petersburg, Russia

Abstract. Spectral and spatial distributions of phonons generated in a quantum wire by a
transport current are investigated as a function of the voltage across the nanostructure and the
gate voltage. We start with consideration of the simplest case of a uniform nanowire which
connects two thermal reservoirs. Then the role of the leads is discussed. It is shown that both
spectral and angular distributions of emitted phonons depend significantly on the bias voltage.
Studies of phonon generation allows one to determine the electron-phonon coupling constant in
ballistic devices.

Electron-phonon interaction leads to absorption and emission of phonons by the elec-
trons in quantum wires. In the equilibrium there is a detailed balance between the emit-
ted and absorbed phonons. However, out of equilibrium, the distributions of electrons
penetrating into a biased quantum wire from the leads are characterized by different
chemical potentials. Therefore the phonon emission prevails over the absorption. The
generation rate of the phonons at a given frequency W propagating along a given direc-
tion is a specific function of the bias voltage. Knowing this function one can determine
electron-phonon coupling constant, get information about the device shape, etc.

As we will see, at a small bias voltage only the transitions within one mode of
transverse motion are allowed, while at large voltages the interband transitions are also
possible. Consequently the voltage dependence of the generation rate is a step-like
function. The threshold voltages are directly related to the band gaps between the
modes of transverse quantization, while the generation rates at the plateaus are related
to the electron-phonon coupling constant inside the nanowire. It is important to note
that in this way one can study electron-phonon interaction in nanowires.

The edges of the channel play a specific role. Namely, if the channel's shape is
smooth enough, one can describe the situation in terms of a position-dependent band
structure [1]. We will show that the phonons with a given frequency and propagation
direction can be generated only near specific points where the local energy and quasi-
momentum conservation laws are met. Consequently, the phonons emitted from the
edges bear information about the position-dependent band gaps between the modes of
transverse quantization.

Uniform channel

In a uniform channel, the electron states are p (r) = L-'/ 2Xn(r±) exp(ipx/h), where
L is a normalization length close to the physical length of the wire, x is the longitudinal
and r_ the transverse direction, p is the x-component of the electron quasimomen-
turn, and Xn(r±) is the wave function of transverse quantization, the energy being0 +P2
n(P) = En 1 pZ/2m. Here m is the electron effective mass, and En =- E(p = 0) is the

74



TN.05 75

bottom of the n -th transverse band. The matrix element for phonon-induced transitions
is Cn,, (q±) = (X,,' exp(-iqir±) lXn), where q is the phonon wave vector. For the
phonon-electron collision operator one gets [2]

o il -= 2 E ,dWq]Cn(q±)1
2 [fn,p+hq,(1 - fn',p)(Nq + 1)-- t- Coll A n'

-fnp(I - fn,p+hq,)Nq] 6[En(p + tqx) - En'(P) - hWq]. (1)

Here dip = dp/27rh, A is the cross section of the channel, while the factor 2 comes
from the summation over electron spin (we assume all the transition probabilities to
be spin-independent). The coupling coefficient W for the piezoelectric coupling is
Wq = (Tr/pWq)[47re13q,iqV,1/cqq] 2. Here e is the electron charge, 3i,ln is the tensor of
piezoelectric moduli (which is symmetric in the last two indices), cil is the tensor of
dielectric susceptibility, and 0 is the polarization vector (that is the unit vector along the
elastic displacement u) of the phonon with the wave vector q. The index q indicates the
projection of a tensor on the q direction, while p is the mass density. For the deformation
potential interaction we have W = 7rA 2q2/pWq, where A is the deformational potential
constant for the phonon branch under consideration.

Let us investigate the consequences of the energy and quasimomentum conservation
En(p + !h.q) - ci' (p) - hWq = 0. For the solution of this equation, Pn,,, one has

pn,' = (m/cos 0) (s - A,,/tiq) - (1/2)hq cos 0, (2)

where s = w/q is the sound velocity, 0 is the angle between q and the x-axis, and
Ann' = EO - EO,. Consequently, the delta-function in Eq. (1) can be expressed as
(m/hql cos 01) 6(p-pnW). Following Landauer-Bfittiker-Imry (see e.g. [4]), we consider
a semiconductor quantum channel connected to two reservoirs, each in independent
equilibrium. Thus the equilibrium distribution functions are fno)(p) - f(F) [E (p)
eV/2 - bt], where f(F) is the Fermi function.

Consider the transitions involving a phonon with a given x-component of the wave
vector, q, > 0. Such a phonon can be emitted by transition 1 from the state having
positive initial momentum p + i!q, to the state with negative momentum p (see Fig. 1,
left). As is usually accepted [4], the initial and final states are determined by the
Fermi functions with chemical potentials p(±) = bt ± eV/2 and the same temperature
T. For n = n', the solution P,n' of Eq. (2) is n-independent and equal to p, =
ms/cos0 - (1/2)t!qcos0. So the n = n' part of the collision term for T = 0 (or, to be
more specific, hwq > kBT) can be rewritten as

[ONq] col -- • q Cn"(q±)12 0[it(+) - En(ki)] 0[En(pI) -P(-)] . (3)

Ot Cll A 2 q1COS01

where ki = p, + hq, = ms/ cos 0 + tq!1/2 . One can easily see that a current-carrying
channel can generate phonons, the phonon generation being restricted to the fre-
quencies 2ms 2 /h <_ Wq < eV/h. In the right panel of Fig. 1 the angular dependence
of the phonon emission rate is shown for different bias voltages. The typical rate
is R = W,/2irAhs. Assuming 47rz32/ps 2 = 4 x 10-4, S = 3 x 105 cm/s, E=10,
A = 10-12 cm 2, q = 6ms/h, m = 0.07mo, we get R ; 5 x 1011 s-1. It is seen that the
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Fig 1. Left: Scheme of transitions. Right: Angular dependences of phonon generation rate near

the threshold. eV/kBT: 1 60, 2 65, 3 75.
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Fig 2. Left: Phonon emission in a nonuniform channel by a transition from a propagating to a
reflected electron state. The transition is localized around the point x*. Right: Phonon emission in
a nonuniform channel by a transition between two oppositely directed propagating states. There
are two transition points.

character of the angular dependence is changed at the threshold. The phonons can also
be emitted by interband transitions. Qualitatively the angular dependences are similar
to the case of intraband transitions, but the threshold values of voltage are shifted.

Nonuniform channel

Now consider an adiabatic nonuniform quantum channel with the width depending on
coordinate x. The electron wave functions for such channels can be subdivided into two
categories - the propagating states and the reflected states on each side. An important
simplification is that at qL > 1 one can employ the stationary phase approximation
for estimation of the transition probabilities. As a result, it is the local conservation laws
at the stationary phase points x* that enter transition probabilities. Let us again assume
T = 0. Then the only possible phonon-generating processes are the ones shown in
Fig. 2

For a transition of the kind in Fig. 2, right, there will in fact be two transition points,
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Fig 3. Dependence of the generation rate (left) and its voltage derivative (right) on bias voltage.

one on each side of the constriction The corresponding two parts of the transition
amplitude give rise to the interference term 2{1 + sin[Wo(x*) - Wo(-x*)]} where Wo is
the phase of the transition amplitude. Fig. 3 shows the dependence of the generation
rate on the bias voltage that results from such a term for a set of typical parameters.
As eV = t(+) - P(-) increases, more and more phonon emitting transitions become
possible, and so the rate increases.

In conclusion, we have calculated the rate of phonon generation by a current-carrying
quantum channel. It is shown that the spectral and spatial distributions of emitted
phonons bear information both on electron-phonon coupling in the vicinity of the device
and on characteristics of the electron spectrum.
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