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Abstract are widespread. For modelling mechanical systems

The object-oriented paradigma is a new but proven technol- ADAMS [31 or SIMPACK [41 are frequently used. For

ogy for modelling mechatronics, i.e. multidisciplinary mod- electronic systems PSPICE [51 is an appropriate tool. Other

elling. For many reasons the object-oriented approach is specific tools are used to solve modelling tasks in flow
very much desirable also for qualitative models in system dynamics, thermal flow or chemical processes. Each of
design, diagnosis or verification. Bayesian networks are a these programs are specially tailored for the specific
very robust technology for qualitative probabilistic model- domain.
ling. In this paper we present a first approach in using the A mechatronic system consists of a control logic, elec-
Bayesian networks modelling technique with the quantita- tronics and a controlled mechanical, hydraulic or any other
tive object-oriented method. Analogous to Modelica, an physical or chemical system. The entire system is com-
object-oriented modelling language, we constructed a Baye- posed of subsystems of different domains. This shows the
sian network library for modelling hydraulic systems. These restriction of all classical modelling systems, since the con-
Bayesian networks are called Object Oriented Dynamic trol part can be easily described for example in Matlab/
Bayes Nets (OODBNs). Our method is easily transferable to
any other physical domain or logic. In this contribution our Simulink, but it is nearly impossible to model an electrical
motivation and the construction steps are described. Simula- subsystem. So, a method is needed for a multidisciplinary
tion results for a sample hydraulic system are given, modelling.

Methods and tools, e.g. Omola, Dymola or Smile, have
been developed which allow multidisciplinary modelling.

Introduction Modelica [6], [7] is the latest step in this direction. It is a

Future system architectures will be characterized by standardized object-oriented modelling language which is

highly modular and reusable components, and by abstract supported by the tool Dymola [8] for example.

description languages widely independent of implementa- Dymola/Modelica comes with libraries for different
tion details. Typical components of system architectures are physical domains like electrics/electronics, mechanics,
software and hardware (sub-)systems. On the Software side thermal flow or hydraulics, see Figure 1. It also contains a
the object-oriented paradigma is by now (at least in indus- signal block and a Petri net library. A library consists of a
trial applications) the defacto description or modelling lan- set of templates for different physical or logical objects.

guage standard, mostly represented by the Unified The user can extend a library for example by inheritance or

Modelling Language (UML). On the Hardware side, which can create completely new libraries. A model is described

is our focus here, we have mechatronic hardware compo- by an object diagramm. Most tools contain a graphical
nents, the constituent parts of which are control logics and interface with a simple drag and drop technique for the tem-

controlled physical or chemical systems. Modelling mecha- plates and interconnections at the object interfaces. The
tronic systems challenges the engineer due to different interconnections have the meaning of constraints. More
physical domains. In order to reach the goal of a truly uni- precisely, two types of equations are generated when two

fied description of system architectures comprising Soft- physical objects are connected: a flow and a potential equa-

ware and Hardware systems, the description or modelling tion. With the definition of the flow and the potential vari-
languages of mechatronic systems have to be lifted to a ables, the energy.flow in the interface is uniquely defined.

similar abstract level as their Software counterparts. This is valid for all lumped parameter systems. The great

Model based techniques play an important role in con- advantage is that the system can now be modelled by local

current and future engineering processes. Models and simu- behaviour and not by global analysis [91, which supports

lations are a basis for system design and analysis, e.g. for the general idea of modularity.

geometric layout of hydraulic systems. On the other hand,
model based control and model based diagnosis are state of Qualitative Models and Bayesian Networks
the art. Qualitative modelling offers many well-known advan-

Many different philosophies have been developed to sup- tages for system design, diagnosis or verification, see [14]
port the modelling task. In the control engineering area for a very extensive survey of techniques and applications.
tools like Matlab/Simulink [1] or MatrixX SystemBuild [2] Some of these advantages are:
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Figure 1: The hydraulics library and an object diagram in Dymola.

" handling of incomplete and imprecise knowledge, Object-oriented Bayesian networks were introduced in
" robustness, [13], and are now supported by the newest version of the
" easy comparison of system alternatives, e.g. parameters commercial Software tool HUGIN [12] for example.

variations,
" direct interpretation of simulation results, Template construction
" complexity. In this section we describe the conversion steps from
Our vision is an object-oriented method using Bayesian net- Modelica to Bayesian network templates. The conversion
works for modelling physical systems, especially system will proceed in four major steps. First, given a dynamic com-
dynamics. Bayesian networks are a well-suited method for ponent, the differential equations will be discretized in time
handling imprecise knowledge in a consistent way. Efficient using Euler's rule. Second, the equation part of a Modelica
learning and adaption algorithms are known for Bayesian template will be reformulated with qualitative operators.
networks, which is a very interesting option for automatic Third, the qualitativ landmarks have to be chosen for each
model calibration. The definition of a Bayesian network BN state variable and each parameter. Fourth, the resulting qual-
is as follows: BN - {DAG, CPDs}, where DAG is a directed itative equations will be graphically programmed with Baye-
acyclic graph, consisting of nodes and directed edges or sian networks.
links, and CPDs are conditional probability distributions. An fuel reservoir called "VolumeConst" will serve as an
The nodes in a Bayesian network represent propositional example. The icon used in the Modelica HyLib library [15]
variables of interest (e.g., the temperature of a device). The is shown in Figure 2. Note, that the component VolumeConst
links of a BN represent informational or causal dependencies has one port (portA) and that the flow into the component
among the variables. These dependencies are quantified by has a positive sign . PortA can be viewed as a real physical
conditional probabilties (the CPDs) for each node given its flange with some pressure p and an oil flow q. The behavior
parental nodes in the DAG. We do not cite the Bayesian net- of the component VolumeConst is described in Modelica by
works fundamentals in this paper, but refer to the relevant lit- the equation block. Other definition blocks like the graphi-
erature, see [10] for some Bayesian networks basics or [11] cal, interfaces or parameter block are omitted.
for an excellent textbook.
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Figure 2: The Dymola representation for a fuel reservoir.

model VolumeConst (D X X 0 +
graphical block I

interfaces block y - z z - z ?

parameter block y 0 z z 0 z= +
equation + ?_+ _ +
der(portA.p) - beta/volume * portA.q; Y Z

+  = +
end VolumeConst Table 1: Qualitative addition defined.

The equation block consists of one differential equation The z - ? entry marks the ambiguity of the result, when
with beta and volume being fixed parameters defining the
effective bulk modulus of the liquid and the volume in the D operator is applied on x - and y - + or vice versa,

square meters, respectively. After chosing a time step h the respectively.
time discrete version is as follows: Now the Bayesian network template for VolumeConst can

be constructed. The basic idea is to identify each qualitative

model VolumeConstDiscr variable with a Bayesian network node, the qualititative val-

equation ues with the states of this node, and the qualitative calculus

1\h (portA.p(t) - portA.p(t-h) with CPDs.

(beta/volume * portA.q(t)) We give an example for the D operator applied on vari-

end VolumeConstDiscr ables x and y . The principle Bayesian network is shown in
Figure 3. The entries in the CPD table in Figure 3 are proba-

Next, qualitative operators are inserted. bilities, where each column sums to 1. The z - ? entries in
the operator table can be represented by the colomns with the

model VolumeConstQual uniform distribution, i.e. 1/3 for each entry in this case.

equation Any other algebraic operation can also be reformulated as
portA.p(t) D -portA.p(t-h) - a Bayesian network fragment. In this way the complete tem-

const 0 portA.q(t) plate for VolumeConst is constructed. The result is shown in

end VolumeConst Qua! Figure 4. The port nodes, which correspond to the port vari-
ables in portA are marked with a rectangle. When the Baye-
sian network template is instantiated in a system model only

Now we have to choose a quantity space, the "landmarks", the input and output nodes, i.e. the port nodes, are visible.
for the variables and parameters. For clearness, we choose a Note that this is a dynamic Bayesian network, because node
three valued quantity space x e {-, 0, +} for all variables x. PAO carries the state of the pressure at time slice t-h and PAl
Some qualitative calculus has to be defined for the chosen the state at time slice t. The difference is calculated in node
quantity space. Qualitative addition D for the three valued dPOl.
quantity space can be defined straightforward [14] as in
Table 1.
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Figure 3: Bayesian network fragment and the CPD for the D operator.
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Figure 4: Bayesian network template for VolumeConst.

What is missing yet are the constraint templates, which two templates with the CPDs in Figure 5 and Figure 6,
serve as connectors between components. We need two dif- respectively. For the pressure we assume three values: zero
ferent templates, one expressing that there is equal pressure pressure (0), low pressure (+), high pressure (++). Note, that
at two connected ports, and a second one, expressing that the the arcs are directed to the "inner" constraint node, such that
flows sum up to zero at a hydraulic node. We present these the resulting Bayesian network model is always acyclic. In

.umO=tre 0 0 1 0 1 0 1 0 0.... -fu o 1 1 l 1 1 0 1........ 0 .....1.

Figure 5: Bayesian network template ZeroSumFlows2 for the flow constraint.
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Figure 6: Bayesian network template EqPressure2 for the pressure constraint.



Figure 5 and Figure 6 we show the simplest scenario that viously discussed three state nodes, each dynamic variable
two components are connected in series. In Figure 1, on the here has five states. We used the object-oriented Bayesian
right hand side, this is the case for the "ReliefValve" and the network software Hugin. Currently, only discrete valued
"LineToFilterResistance". In the Bayesian network for this nodes are used. This is reasonable, because many mecha-
tank system, the ReliefValve-template and the LineToFilter- tronic systems are hybrid or switching. Discrete valued
Resistance-template will be connected via the flow con- nodes allow us to model arbitray dynamics, whereas contin-
straint and the pressure constraint, see also Figure 7. Note uous valued node models result in Kalman models, thus lin-
that the table entries are hard 0/1 decisions. Before propagat- ear models.
ing the Bayesian network, the "true"-state of the sum_0 and We will shortly discuss the hydraulic library. The ideal
the eqp nodes must always be set evident. Doing this, the flow source has two ports, namely A and B, or a "positive"
pressures on both sides are forced to be equal. The flow con- and a "negative" port, with only one flow variable which can
straint then simply states, that the mass flow coming out of be controlled, i.e. set evident. A real flow source called Real-
the first component equals the mass flow into the second FuelPupn is derived from this ideal flow source. Addition-
component. In the general case, where more than two com- aly i s evom mdel w s ddition-
ponents meet, for example the "LineToFilterResistance", the ally it contains the volume model, which was described
"FilterResistance" and the "ReliefValveFilter", the flow con- above. So the port B of RealFlowPump delivers a pump flowstraint template must be assembled from the G -operation and a pump pressure. The tank model has only a flow vari-

able at the ports A and B. It is dynamic, modelling the
fragment, see Figure 3, and the flow constraint template of change of the fuel volume over time.
Figure 5. This new object is then called ZeroSumFlows3 and
is shown in Figure 7. The relief valve has a switching behaviour in Modelica.

Pressure and flow is specified at the ports. In Modelica the
Results valve logic is modelled with a state machine. We modelled

this valve logic with a Markov model, having the two states
A basic library for constructing simple hydraulic circuits "open" and "closed". At last, the hydraulic resistance has two

has been developed. It contains an ideal flow source, a reser- ports specifying pressure and flow. It models laminar flow,
voir, a hydraulic resistance, a tank, a relief valve, a real flow i.e. the pressure drop over a hydraulic line.We used this ele-
source, and the constraint templates. Differing from the pre- ment also to model the resistance of the fuel filter.

P2 P1 P3 1UTFilterRita P2 Pl q1 q2

Figure 7 AThe Baesa Pn t2 woktn1 ste mdl

u mF " PA.1 PumFIB-

P rsr2 1 q2 q1

l Fite~ei@ ... J _i R '. l , e
Filt e" 

RealFuelPump_1

gJ

Figure 7: The Bayesian network tank system model.



We present a little hydraulic circuit, that is, a fictitious that is, they were calculated by propagation. The results for
tank system. This system was first modelled for reference in 100 time steps are shown in Figure 8, Figure 9, and
Dymola/Modelica, see Figure 1 on the right hand side. Then Figure 10. These figures show the evolution of the probabil-
we built this system using the dynamic Bayesian network ity distributions. The darker the colour bars are, the higher
templates. The Bayesian network tank system is shown in the probability. We added mean values for conveniance. The
Figure 7. For the dynamic simulation, we set evident all con- plots were produced using the Qualitative Modelling Tool-
straint nodes and the pump flow. All other nodes are hidden, box for Matlab SIMULINK [16].
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Figure 8: The pump flow (evident node).
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Figure 9: The flow into the fuel reservoir VolumeConst (inside the RealFuelPump template - hidden node).

Conclusion and future work cess has been made to select the states (the "landmarks")
upon measurements or quantitative simulations, using a sim-

In this contribution we have motivated the need for intelli- ple heuristic from system identification. Furthermore, learn-
gent modelling techniques. For system design, diagnosis or ing respectively adapting the CPDs using HUGINs adaption
verification qualitative models are a very good choice. We API was very promising.
favor the Bayesian network technology due to their robust-
ness, intuitivity and practicability.
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Figure 10: The ReliefValve behavior (hidden node), where '0' means closed, and '1' means open.
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