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Abstract Definition (Diagnosis System): A diagnosis system is a triple

Model-based diagnosis can be formulated as the (SD, COMPS, OBS) such that:
1. SD is a system description expressed in one of several

combinatorial optimization problem of finding an forms - constraint languages like propositional logic,
assignment of behavior modes to all the compo- probabilistic models like Bayesian network etc. SD specifies
nents in a system such that it is not only consis- both component behavior information (SDB) and compo-

tent with the system description and observations, nent structure information (i.e. the topology of the system)

but also maximizes the prior probability associated nstt
with it. Because the general case of this problem (SDT).
ith it.oneBecaus the gnercas of nt s, e 2. COMPS is a finite set of components of the system. A

is exponential in the number of components, we component compi (1 < i < ICOMPSI) can behave in one
try to leverage the structure of the physical sys- of several, but finite set of modes (Mi). If these modes are
tem under consideration. Traditional dynamic pro- not specified explicitly, then we assume two modes - failed
gramming techniques based on the underlying con- (AB(eompO)) and normal (-iAB(eompO)).
straint network (like heuristics derived from maxi- (B(oni)adnra B(onj)
stmraintoklike hderistic donotervesfry mx- 3. OBS is a set of observations expressed as variable values.
mum cardinality ordering) do not necessarily sup- The task of diagnosis is to "identify" the modes in which
plement or do better than algorithms based on using individual components are behaving given the system de-
truth maintenance systems (like conflict-directedscito(S)adheberton(uS)
best first search). scription (SD) and the observations (uBS).

Definition (Candidate): Given a set of integers
In this paper, we compare the two approaches and il .. iiCOMPSI (such that for 1 < j <_ ICOMPS,
examine how we can incorporate the dynamic pro- 1 < ij IMAj), a candidate Cand(i"" ijcoMps) is
gramming paradigm into TMS-based algorithms to
achieve the best of both the worlds. We describe defined as Cand(i ... iICOMPS = (U k~lMPSI (COMPk
an algorithm called hierarchical conflict-directed Mk (ik))).

best first search (HCBFS) to solve a large diag- Here, M,,(v) denotes the vth element in the set M, (assumed
nosis problem by heuristically decomposing it into to be indexed in some way).
smaller sub-problems. We also delve into some of
the implications of HCBFS with respect to (1) pre- 2 Diagnosis as Combinatorial Optimization
compiling the system description to a form that can
amortize the cost of a diagnosis call and (2) facili- Consider diagnosing a system consisting of three bulbs
tating other hybrid techniques for diagnosis. B 1 , B 2 and B 3 connected in parallel to the same volt-

age source V under the observations of f(B 1 ), of f(B 2 )
and on(B 3). AB(V) A AB(B 3 ) is a diagnosis under the

1 Introduction consistency-based formalization of diagnosis [de Kleer et al.,

Diagnosis is an important component of autonomy for any 1992] if we had constraints only of the form iAB(B3 ) A
intelligent agent. Often, an intelligent agent plans a set of ac- -AB(V) -+ B 3 = on. Intuitively however, it does not
tions to achieve certain goals. Because some conditions may seem reasonable because B 3 cannot be on without V work-
be unforeseen, it is important for it to be able to reconfigure ing properly. One way to get around this is to include fault
its plan depending upon the state in which it is. This mode models in the system [Struss and Dressler, 1989]. These are
identification problem is essentially a problem of diagnosis. constraints that explicitly describe the behavior of a compo-
In its simplest form, the problem of diagnosis is to find a nent when it is not in its nominal mode (most expected mode
suitable assignment of modes in which each component of of behavior of a component). Such a constraint in this exam-
a system is behaving in, given some observations made on ple would be AB(B 3) -4 of f(B 3). Diagnosis can become
it. It is possible to handle the case of a dynamic system by indiscriminate without fault models. It is also easy to see
treating the transition variables as components (in one sense) that the consistency-based approach can exploit fault models
[Kurien and Nayak, 20001. (when they are specified) to produce more intuitive diagnoses



(like only B1 and B 2 being abnormal). tial in the number of components. It can however, be poten-
The technique of using fault models however is associated tially improved by leveraging the structure of the system. One

with the problem of being too restrictive. It may not model popular method of leveraging structure using the paradigm
the case of some strange source of power making B 3 on etc. of dynamic programming is to use heuristics derived from a
The way out of this is to allow for many modes of behavior maximum cardinality ordering (m-ordering) [Tarjan and Yan-
for the components of the system. Each component has a set nakakis, 19841 over the constraint network relating the vari-
of modes with associated models - normal modes and fault ables of the system. Such techniques have been used in a va-
modes. Each component has the unknown fault mode with riety of domains - Bayesian network reasoning, constraint
the empty model. The unknown mode tries to capture the satisfaction problems [Dechter, 19921 etc. A constraint net-
modeling incompleteness assumption (obscure modes that we work on the variables of the system is defined by having
cannot model in the system). Also, each mode has an associ- the variables represent nodes and constraints in SD repre-
ated probability that is the prior probability of the component sent hyper-edges. Any kind of optimization or satisfaction
behaving in that mode. Diagnosis can now be cast as a com- defined over the variables can be done in time exponential in
binatorial optimization problem of assigning modes of behav- the induced width of the graph [Dechter, 19921. Although the
ior to each component such that it is not only consistent with induced width itself cannot be found constructively in poly-
SD U OBS, but also maximizes the product of the prior prob- nomial time, heuristics derived from m-ordering perform rea-
abilities associated with those modes [de Kleer and Williams, sonably well in practice. Throughout the rest of this paper,
19891. Note that the combinatorial optimization formulation we will refer to all such heuristics as naive m-ordering (naive
of diagnosis assumes independence of the behavior modes of because they do not supplement the power of TMS-based al-
components. gorithms).
Definition (Combinatorial Optimization Characterization) A
candidate H = Cand(ii .. iCOMPSI) is a diagnosis if These heuristics however, may not be directly beneficial

and only if SD U H U OBS is satisfiable and P(H) - or applicable when the number of components is somewhat
ICOMPSI plesser than the total number of variables in the system (which

(kl eP(Compk = Mk (ik))) is maximized, is usually the case). The induced width of the constraint net-
There are many other characterizations of diagnoses based work relating all the variables in a physical system can easily

on the notions of abduction, Bayesian model selection, model be much more than the number of components. A further dis-
counting [Kumar, 2002] etc. These characterizations (includ- advantage of such approaches is that often the relationships
ing combinatorial optimization) are mostly for choosing the between variables are too complex and consistency checks
most likely diagnosis and do not incorporate any notion of may involve some kind of a "simulation". Since dynamic
refinement [Lucas, 1997]. The combinatorial optimization programming techniques based on these heuristics maintain
formulation to return the most likely diagnosis is however and build partial assignments, they are very likely to be costly
justified, practical and suited for a variety of real-life appli- processes. Furthermore, in many cases, the number of faulty
cations [Kurien and Nayak, 2000]. It also benefits from the components is usually far lesser than the total number of com-
availability of computationally efficient algorithms to solve ponents and these techniques do not exploit this significantly
combinatorial optimization problems [Williams and Nayak, towards computational gains.
19961.

One approach that addresses these problems some-
3 Computational Methods what indirectly is conflict-directed best first search (CBFS)

[Williams and Nayak, 1996]. It is based on the idea ofex-
Definition (Combinatorial Optimization Problem): A combi- amining hypotheses in decreasing order of their prior prob-
natorial optimization problem is a tuple (V, f, c) where (1) abilities and using a truth maintenance system (TMS) to
V is a set of discrete variables with finite domains. (2) An catch minimal conflicts and focus the search. QCBFS [Ku-
assignment maps each v in V to a value in v's domain. (3) f mar, 20011 is an extension of CBFS that leverages qualitative
is a function that decides feasibility of assignments. (4) c is a knowledge present in the system. Because hypotheses are ex-
function that returns the cost of an assignment. (5) We want amined in order of their probabilities, diagnoses that entail a
to minimize c(V) such that f(V) holds, nominal behavior for all but a few components are caught as
In the context of diagnosis, the following correspondences soon as possible (unlike in the naive m-ordering case).
hold: (1) V = COMPS. (2) Domains correspond to modes
of behavior of components (3) An assignment is a candi- A TMS incorporates and uses the following properties: (1)
date. (4) c is a simple cost model assuming independence If a partial assignment to the mode behaviors of a subset of
in behavior modes of components c(compi = M (v)) = the components is inconsistent, then any other assignment
lgP(compi=M(v*)) Here, Mi(v*) is the nominal mode of that contains this subset unchanged is also inconsistent. (2)
log P(corapi=M(v)) * Smaller conflicts result in more pruning of the search space
behavior of campi; P(compi = M(v*)) _ P(campi = and therefore, whenever an assignment A is infeasible, a min-
M(v)) for any v $ v*. c(Cand(ii ... iCOMPSI)) = imal infeasible subset of A is returned (using dependency

Z§COMPS C(Compk = Mk(ik)). (5) f is the satisfiability tracking). (3) Since the hypotheses that we examine differ
of SD U Cand(ii ".ilCOMPSI) U OBS. only incrementally from one another in the assignments for

A brute-force method of solving such a problem is to use behavior modes of components, feasibility checks are made
a simple best first search (BFS) which is clearly exponen- more efficient (like in ITMS [Nayak and Williams, 19971).



I I I I I I I I 7 l I 1( A11 11 A

D0
C I) I

(A) (B) (C) (D)

Figure 2: (A) The physical setting. (B) The graph represen-
Figure 1: (a) Shows the worst-case scenario for m-ordering. tation. (C) The constraint network. (D) The T-Graph.
(b) Shows the worst-case scenario for CBFS.

cies are traced back to the components C1 - C6 however, the

3.1 Comparison of naive m-ordering and CBFS search space over component behavior modes is never pruned
by a minimal conflict of size lesser than 6. If on the other

While naive m-ordering exploits the structure of the under- hand, we split the problem into two (by treating the cases
lying constraint network, it does not exploit the fact that we {T1 = 1, T2 = 0} and {T1 = 0, T2 = 1} separately) the
are interested in an assignment only to the components of the search space can be reduced to being exponential in 4 vari-
system (and not the intermediate variables). This becomes ables (rather than 6).
a liability especially when consistency checks involve "sim-
ulation" and are therefore costly. It performs badly when a 4 Hierarchical Conflict-Directed Best First
"small" number of components are "tightly" connected. Fig-

ure l(a) illustrates the bad behavior of m-ordering. There Search (HCBFS)
are 4 components that can possibly behave in different modes Before we describe HCBFS as an algorithm that can combine
(C1, C2, C3 and C4). F1, F2 and F3 are not modeled as com- the best of both the above approaches, we define the follow-
ponents but are some complex mappings (involving simula- ing notions related to the structure of a physical setting.
tion) from their inputs to outputs. The number of parents of Definition (Structural Parameter Set): The structural pa-
C4 is equal to 6 and the combinatorial optimization problem rameter set S of a physical system is the 4-tuple S =
is exponential in this quantity [Darwiche, 1998]. A TMS- (COMPS, 1,O, T). Here, I is the set of external inputs,
based algorithm however, would require only a search space 0 is the set of output variables under observation, and T is
exponential in the number of components (-4). This can be the set of intermediate variables in the system which are not
verified by noting that once a set of modes is assumed for each under observation.
component (as in a TMS-based algorithm), verifying that the Definition (Graph Representation): The graph representa-
current set of inputs lead to the observations is not exponen- tion of a physical system with structural parameter set S and
tial but only polynomial in the size of the graph. This is be- a topology characterized by SDT is a graph with nodes corre-
cause any component maps its inputs to a unique output and sponding to elements in S and undirected edges correspond-
we just need to follow the inputs through all the transforma- ing to physical connections inferred from SDT.
tions defined by the components to eventually verify whether Definition (*-node): A node in the graph representation of a
there is a match with the observations. In the case of naive m- physical system is a c-node, i-node, o-node or a t-node when
ordering however, combinatorial optimization requires us to it corresponds respectively to a component, input variable,
compute and store against all values of communication vari- output variable or an intermediate variable.
ables around a family (also called partition), the most likely Definition (T-Graph): The T-Graph of a physical system with
modes of behavior of the components in it. This makes it ex- structural parameter set S and topology SDT is a graph built
ponential in the induced width of the graph. It is also easy to out of removing the c-nodes from its graph representation and
see (as claimed earlier) that when the diagnosis is quite close directly connecting the inputs to their outputs (in that direc-
to the nominal behaviors of components, there is no obvious tion).
way of exploiting it with m-ordering. Figure 2 illustrates the above definitions for a simple physi-

CBFS on the other hand, exploits the fact that we are inter- cal setting. Note that the graph representation is not the same
ested in an assignment only for the components of the system, as the constraint network specified by SD. While the con-
but does not exploit the structure of the physical setting effi- straint network is built on the variables of the system (ex-
ciently. The only indirect way in which the structure comes cluding components) using SD, the graph representation is
into play is in the TMS implementation off to catch min- built only out of SDT (and includes the components). The
imal conflicts. The problem with CBFS is in large due to T-Graph represents the causal relationships among the vari-
the fact that all inconsistencies are traced back to the compo- ables (excluding the components) and it can be observed that
nents. This makes CBFS perform sub-optimally when com- the constraint network is equivalent to the T-Graph moralized
ponents are "loosely" connected. Figure 1(b) illustrates the by making a clique out of all the parents of any node [Dechter,
bad behavior of CBFS. An observation of 0 - 1 when C7 is 19921.
an XOR gate entails the conflicts {T1 = 1, T2 = 1} and Notation: Let M(i) be the set of modes in which component
{T1 = 0,T2 = 0}. Note that TI - 0, T2 -0, TI - 1 or compi can behave. Let ci be the cardinality of this set. Let
T2 - 1 are not conflicts by themselves. If all inconsisten- T(i) be the set of values an intermediate variable t-nodei can



take. Let ti be the cardinality of this set.
Definition (c-size): The c-size of a sub-graph G is the product
of the number of modes in which each component it contains
can behave, = IIiccOMPS(G)ci.
Definition (t-partition): A t-partition of a graph representa-
tion is any collection of vertex induced sub-graphs S, ... Sk ALGORITHM HCBFS (Graph G = (V, E))
such that for all i,j with 1 < i,j _ k, Si n Sk C T. T = T-Graph of G
Definition (t-size): The t-size of a sub-graph in a t-partition T' = Partition-Tree formed by m-ordering
of the original graph is the product of the number of dif- on moralized T
ferent values each of the t-nodes it shares with other sub- E = Edges of T'
graphs, can take. In other words, suppose S1 ... Sk form a GREEDYSPLIT (G, E)
t-partition of the original graph. Denote the t-nodes in each END HCBFS
of these sub-graphs by ST ... STk. The t-size of Si is given
by HjEST (tj 13h, 1 < h < k, h 7 i, j E STh). ALGORITHM GREEDYSPLIT (Graph G,
Definition (ct-size): The ct-size of a graph is the product of Candidate-Splits B)
its c-size and t-size. bk - BEST-SPLIT (G, B)

Given the graph representation of a physical system, IF (SPLITTING-CONDITION (G, bk)) THEN
its c-size characterizes the size of the search space for (G1 , G2 ) -PARTITION (G, bk)
CBFS. The general idea behind HCBFS is to reduce the B1 = {b Ibi is on the same side of bk as G1 }
effective search space of CBFS using dynamic program- B2 = {biIbi is on the same side of bk as G2}
ming. Suppose we were able to divide the system into two GREEDYSPLIT (G1 , B1)
subsystems that had components comp...- campi, and GREEDYSPLIT (G2 , B 2)
compj1 ... compj, 2 such that n, + n2 = ICOMPS. Now, END IF
the search space for each of these two individual partitions END GREEDYSPLIT
(for CBFS) becomes their respective c-sizes. Calling them
C1 and C2 respectively, we have C1 .C2 = C (C is the c-size Figure 3: Hierarchical Conflict-Directed Best First Search
of the original graph). Of course, the search cannot simply
be done in each of them independently because of the com-
mon variables they share. However, we can apply the idea
of dynamic programming to solve each of these partitions
for all values of the variables they share and then "join" the
two results. If we allow for the common variables to be only
among the t-nodes, then the size of the search space becomes
C 1T + C2T + T 2 (T is the t-size of the common t-nodes).
C 1T + C2T accounts for solving the sub-problems for all
values of the communication variables, and T 2 accounts for
"joining" them. It should be noted however, that if consis- 12 12

tency checks involve "simulation", then the T 2 term tends to
be negligible (because search over the join-space does not in-
volve simulation). Generalizing the above idea of dynamic P- - -

programming, it is also possible to characterize n-way splits ,,
which partition the original graph into n partitions each of C3

which share communication variables with a subset of the
others. 1 c5
Definition (Splitting Condition): The splitting condition 4 --- - - 4

holds for a t-partition in a graph G if the sum of the ct-sizes of .....

the partitions and the join-size is strictly lesser than the c-size
of G.

To obtain maximum computational benefits, we have to
find a t-partition that minimizes the sum of the ct-sizes of Figure 4: Illustrates the working of HCBFS to produce sub-
the resulting partitions and the join-size. This general n-way problems. Thicker edges denote greater communication (t-
split is NP-hard to find (easy to prove from the fact that find- size). P1, P2, P3 are the final partitions. The tables indicate
ing the induced width is NP-hard). However, HCBFS em- the solutions to diagnosis sub-problems for all values of the
ploys a heuristic to decompose a large diagnosis problem surrounding communication variables.
into optimal sub-problems based on the topological struc-
ture of the system. It runs in polynomial time and is al-
ways assured of yielding computational benefits (albeit in
sub-optimal amounts). The idea is to examine only a poly-
nomial number of 2-way splits and choose the greediest one



if it satisfies the splitting condition. Such a splitting process of communication variables have been solved at least once, a
is performed recursively until there is no more apparent scope diagnosis call can be answered by doing a search only over
for computational benefits. Interestingly enough, the candi- the join-space of the partitions. This too (as argued before) is
date t-partitions that are examined are themselves derived us- computationally easier than "simulation".
ing the m-ordering heuristics. Figure 3 presents the working The dynamic programming idea of HCBFS can further be
of HCBFS; and Figure 4 illustrates its working on a small used to pre-process or compile the system description to fa-
example. The following properties hold true for the HCBFS cilitate diagnosis. Consider a partition of the graph represen-
algorithm. tation of a physical setting. The idea is to solve the diagnosis
Property 1: The edges of T' maintain the running intersec- problem for this partition for all values of the surrounding in-
tion property [Dechter, 1992] and hence the t-nodes consti- termediate variables (t-nodes) and store the results. We can
tuting the communication variables on any edge form a valid then treat this partition as a single physical component that
t-partition. can take any value (mode) corresponding to a combination
Property 2: Let the c-sizes of the final partitions be of the values for each of its surrounding t-nodes. The as-
C61 .. Ck. The c-size of the original graph is therefore sociated probabilities would be derived from the results for
I=- . The first time we partition G, it must have been the corresponding diagnosis sub-problems. This kind of pre-

the case that (because of the splitting having to be satisfied) compilation of the system to treat partitions as components
lli=kC, > S x T + T x R (T is the size of the communi- provides computational benefits only if their t-size is lesser
cation; S and R are the c-sizes of the two resulting partitions than their c-size (which is often the case).
with S x R = Ili-kC,). In later iterations, the effective S and The space complexity associated with HCBFS has two
R are only made to decrease recursively and this essentially components. One is the size of the tables associated with
means that HCBFS is always safe in producing computational the sub-problems. This is referred to as the table-space com-
benefits. plexity. It is easy to observe that the table space complexity
Property 3: The total number of splits considered is clearly is equal to the sum of the t-sizes over all partitions. Another
linear since they correspond to the edges of T. Although component of the space requirement is the actual space re-
there are two recursive calls to GREEDYSPLIT, the can- quired for the diagnosis algorithms to build the tables and
didate set of edges that enter them are disjoint and hence compose them to answer a diagnosis call. This space require-
GREEDYSPLIT is called only a linear number of times. This ment is identical to the running time complexities associated
proves that the running time of HCBFS is polynomial. with solving and composing sub-problems. It is worth not-
Property 4: Choosing certain edges in a tree as splits results ing that the cost of implementing dynamic programming in
in a set of partitions that themselves form a tree with respect HCBFS is reflected only in its table-space complexity.
to the split edges (as illustrated in Figure 4). Since we know HCBFS also leads to what are called hybrid approaches.
that optimization in a tree structured network is exponential These are techniques that combine conflict-based and
in the ct-size of the largest partition, the complexity of diag- coverage-based approaches [Kumar, to appear] to solve sub-
nosis using HCBFS is exponential in this parameter. problems and combine their solutions. Coverage-based algo-

rithms are those that record conflicts and cast the diagnosis
4.1 Analysis and Implications of HCBFS problem as a minimum weight hitting set problem [Kurien
We briefly delve into the computational implications of and Nayak, 2000]. Conflict-based approaches refer to the
HCBFS. HCBFS facilitates search in two ways. First, it re- standard TMS-based algorithms like CBFS and QCBFS. In
duces the effective search space by using the dynamic pro- general, hybrid approaches do the following: (1) Employ
gramming paradigm. Second, it propagates "easiness" in con- the hierarchical partitioning algorithm to reduce the effective
straint checking. Constraint checking in general may not be search space. (2) Employ one of coverage-based or conflict-
computationally straightforward - it may often involve sys- based approaches for the sub-problems and the join space.
tem "simulation" of some kind over an extended period of
time. It can be noticed however, that constraint checking over 5 Comparison with Related Work
the join space is a mere verification that two selected rows of
the partition tables have similar values for their communica- Related work on trying to leverage structure into the task of
tion variables. By using HCBFS, the simulation-based con- diagnosis can be found in [Darwiche, 19981, [Autio and Re-
straint checks are "pushed" to smaller parts of the system (the iter, 1998], [Provan, 2001 ] etc. In [Darwiche, 19981, negation
partitions). Even for consistency checks that do not involve normal forms (NNF) are used to represent the consequence
"simulation", implementing a TMS for each small partition of SD U OBS. Subsequently, minimal cardinality diagnoses
is more effective (in terms of the complexity of data struc- are extracted from them using a simple cost propagation and
tures to be maintained) than one large TMS for the system as pruning algorithm. For such a procedure to be effective, it is
a whole. important to ensure the decomposability of the NNE Decom-

HCBFS not only reduces the effective un-amortized search posability is achieved by partitioning SD to perform a case
complexity for a diagnosis call, but also reduces the amor- analysis on the shared atoms that do not appear among the
tized complexity. The solutions to sub-problems occurring observations. The partitioning choices are inspired by trying
for diagnosis calls made in the past can be stored and used for to produce a join-tree of the topological structure of the sys-
future diagnosis calls when they need to solve the same sub- tem much like the m-ordering heuristics. The complexity of
problems. Eventually, when all sub-problems for all values the algorithm is exponential in the size of the hyper-nodes of



the join tree and linear in the number of such hyper-nodes. put is uniquely determined for given inputs to a component
There are at least three important ways in which this ap- behaving in a known mode, and that we are interested only

proach differs from ours. Firstly, this approach does not rea- in an assignment to the component modes of the system. We
son about probabilities but rather looks for minimal diagnoses observed that naive m-ordering performs poorly when there is
(minimizes the number of faulty components). Secondly (and high interconnectedness among components and that CBFS
more importantly), it tries to produce diagnoses (minimal) by performs poorly when there is low coupling. We proposed a
maintaining at each stage, a representation for all the consis- computationally feasible algorithm called HCBFS (extending
tent candidates. The optimization phase (of producing mini- on CBFS) to achieve the best of both the worlds. HCBFS uses
mal candidates) occurs as a separate phase. Usually, we are CBFS in tightly coupled parts of the system and m-ordering
not interested in all consistent diagnoses and trying to rep- to identify them. We showed that HCBFS has many important
resent them at any stage when there could potentially be an implications on the complexity of diagnosis - reduces the
exponentially large number of them can be a bottleneck. In un-amortized complexity of a diagnosis call, reduces amor-
our approach, the optimization and satisfaction phases are in- tized complexity of a diagnosis call by reusing computation
terleaved. This allows us to produce candidates as and when done for sub-problems arising in past diagnosis calls, allows
we want them, in decreasing order of their optimization val- pre-compilation of the system description to facilitate diag-
ues, and to prune the search space using both optimality- and nosis, and enhances hybrid algorithms. Finally, we compared
satisfiability-reasoning. Thirdly, if the number of intermedi- and contrasted our work with somewhat related approaches.
ate variables is too many, achieving decomposability in the
NNF is exponential in the induced width of the moralized References
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