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Hybrid Diagnosis with Unknown Behavioral Modes
Michael W. Hofbaur 1 and Brian C. Williams 2

Abstract. A novel capability of discrete model-based diagnosis not impose such a strong modeling assumption. Its concept of the
methods is the ability to handle unknown modes where no assump- unknown mode allows diagnosis of systems where no assumption is
tion is made about the behavior of one or several components of the made about the behavior of one or several components of the sys-
system. This paper incorporates this novel capability of model-based tem. In this way, it captures unspecified and unforeseen behaviors
diagnosis into a hybrid estimation scheme by calculating partial fil- of the system under investigation. This paper provides an approach
ters. The filters are based on causal and structural analysis of the to incorporate the concept of an unknown mode into our hybrid es-
specified components and their interconnection within the hybrid au- timation scheme[9]. As a result we obtain an estimation capability
tomaton model. Incorporating unknown modes provides a robust es- that can detect unforeseen situations. Furthermore, it allows us to
timation scheme that can cope, unlike other hybrid estimation and continue estimation on a degraded basis. We achieve this by causal
multi-model estimation schemes, with unmodeled situations and par- analysis[ 17, 20], structural analysis[7] and decomposition of the sys-
tial information. tem.

This paper starts with a brief introduction to our hybrid systems
modeling and estimation scheme. Upon this foundation, we extend

I Introduction hybrid estimation to incorporate the unknown mode and demonstrate

Modern technology is increasingly leading to complex artifacts with the underlying structural analysis and decomposition task. Finally, an

high demands on performance and availability. As a consequence, experimental evaluation with computer simulated data for a Martian

fault-tolerant control and an underlying monitoring and diagno- live support system demonstrates the advantages of this extended hy-

sis capability plays an important role in achieving these require- brid estimation scheme.

ments. Monitoring and diagnosis systems that build upon the discrete
model-based reasoning paradigm[8] can cope well with complexity 2 Hybrid Systems
in modern artifacts. As an example, the Livingstone system[22] suc-
cessfully monitored and diagnosed the DS-1 space probe in flight, The hybrid automaton model used throughout this paper is based on

a system with approximately 48s modes of operation. However, a [9] and can be seen as a model that merges hidden Markov models
widespread application of discrete model-based systems is hindered (HMM) with continuous discrete-time dynamical system models (we

by their difficulty to reason about the continuous dynamics of an ar- present the model on the level of detail sufficient for this work and
tifact in a comprehensive manner. Continuous behaviors are difficult refer the reader to the reference cited above for more detail).

to capture by the pure qualitative models that are used by the rea-
soning engines. Nevertheless, additional reasoning in terms of the 2.1 Concurrent Hybrid Automata
continuous dynamics is vital for detecting functional failures, as well
as low-level incipient (i.e slowly developing) faults and subtle com- Definition 1 A discrete-time probabilistic hybrid automaton (PHA)
ponent degradation. A is described as a tuple Kx, w, F, T, Xd, 7:,):

Hybrid systems theory provides a modeling paradigm that inte-
grates both, continuous state evolution and discrete mode changes 0 x denotes the hybrid state variables of the automaton3 , composed
in a comprehensive manner. Recent work in hybrid estimation[14, of x -- {Xd} U x,. The discrete variable xd denotes the mode
16, 24, 9] attempts to overcome the shortcomings of discrete model- of the automaton and has finite domain Xd. The continuous state

based diagnosis cited above and provides schemes that integrate variables x. capture the dynamic evolution of the automaton. x
model-based approaches with techniques from fault detection and denotes the hybrid state of the automaton, while x,. denotes the

isolation (FDI)[23, 4] and multi-model adaptive filtering[13, 11, 10]. continuous state.
The hybrid estimation schemes, as well as their FDI and multi-model * The set of 1/0 variables w - ud U u, U y, of the automaton
filtering ancestors, work well whenever the underlying model(s) are is composed of disjoint sets of discrete input variables Ud (called
'close' mathematical descriptions of the physical artifact. They can command variables), continuous input variables u,., and continu-

fail severely whenever unforeseen situations occur. Therefore, it is ous output variables y,.
essential to provide models that capture the entire spectrum ofpossi- 0 F : Xd - FDE U FAE specifies the continuous evolution of the
ble behaviors/modes whenever we use the hybrid estimate for closed automaton in terms of discrete-time diffirence equations FDE and
loop control, for instance. Model-based diagnosis, in contrast, does algebraic equations FAE for each mode Xd E Xd. T• denotes the

sampling period of the discrete-time difference equations.
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* The finite set, T, of transitions specifies the probabilistic discrete Consider the illustrative cPHA in Fig. 1 with
evolution of the automaton.

A 1 = ({Xdl}, {'Udi, ei1, cl }, FIJI, I {m11, M 1 2}...)
Complex systems are modeled as a composition of concurrently A2 = ({Xd2, Xcl}, {fd2, e),I, Ycl}, F 2, T 2 , {fM 2 1 , Mr2 2}...

operating PHA that represent the individual system components. A A3 = {{Xd3, Xc2, Xc3}, {'Ud2, VUcl, Y•l, Yc2}, F1, T, {rmn3 1 }...).
concurrent probabilistic hybrid automata (cPHA) specifies this com-
position as well as its interconnection to the outside world: F1 , F2 and F17 provide for a cPHA mode Xd,(k) =

[mutl, in2 1 , mrt3 1]T the equations
Definition 2 A concurrent probabilistic hybrid automaton (cPHA)

CA is described as a tuple (A, u,y, vs v, Nv , Ny): F1 (mi t) = {'Uel = 5.0 uw),}

"* A = {At, A2,...}, Az} denotes the finite set of PHAs that repre- F2(Mr2 1) = {gX,ý(k) - 0,8 Xcl,(k-1) + Wl(k--1 ),

sent the components Ai of the cPHA (we denote the components Yc,1 = X(2)

ofa PHA Ai by Xdi, X•i, Uai, U,, Yci, Fi, Xi). F3(r31) {X,ý2,(k) Xc3,(k-1) + Y,ýl(k-1), (2)
"* The input variables u = Ud U u. of the automaton consists of the

sets of discrete input variables ud = Udl U ... U Udn (command X,ý3 ,(k) - 0.4 Xc2,(k_1) + 0.5 VUi(k--),

variables) and continuous input variables u, C u0 1 U ... U uu. Y,2 = 2.0 X,2 + X•31}

"* The output variables y,. C ycl U ... U y ,_, specify the observed
output variables of the cPHA. This leads to the discrete-time model:

"* The observation process is subject to additive, zero mean Gaussian l 0,8 l

sensor noise. N, : Xd - I < '" specifies the mode dependent4  
XA,(k) - Xcl,(k-1) + 0.2 Výi(ki) + Vsi(k1)

disturbance vo in terms of the covariance matrix R = diag(ri). X,.2,(k) = Xcl, (k--1) + Xc3.(k--1) + Vs2 .(k--1)

"* N, specifies additive, zero mean Gaussian disturbances that act Xi3,(k) = 0.4 Xc2,(k•1) + 0.5 VU.(k--) + Vs3,(k-1) (3)
upon the continuous state variables x, = x~t U ... U x0 i. Nx : Y1,(k) - Xcl,(k) + Vol,(k)

Xd -+ 1W×' specifies the mode dependent disturbance v. in = 2.0 Xc2(k) + Xc3.(k) + V0 2 ,(k)

terms of the covariance matrix Q.

Definition 3 The hybrid state x(k) of a cPHA at time-step k spec- 2.2 Estimation of Hybrid Systems
ifies the mode assignment Xd,(k) of the mode variables Xd =

{Xdl, • • •, Xdl } and the continuous state assignment XC,(k) of the To detect the onset of subtle failures, it is essential that a monitoring
continuous state variables x, - Xcl U ... U x,1. and diagnosis system is able to accurately extract the hybrid state of

a system from a signal that may be hidden among disturbances, such
Interconnection among the cPHA components Ai is achieved via as measurement noise. This is the role of a hybrid observer. More

shared continuous I/O variables wm G ut,i Uy.i only. Fig. 1 illustrates precisely:
a simple example composed of 3 PHAs.

Hybrid Estimation Problem: Given a cPHA CA, a sequences

Y0 l Kof observations {Yo,(O), YC,(1), .• •, Yc,(k) } and control inputs
U, wcY1  {u(0), U(1),. U(k)}, estimate the most likely hybrid state

Ud AK :A (k) at time-step k.

112  A hybrid state estimate :s(k) consists of a continuous state esti-
CA mate, together with the associated mode. We denote this by the tuple

Figure 1. Example cPHA composed of three PHAs Xs(k) :K (Xd,(k), Xc,(k), P(k)),

where ý:,,(k) specifies the mean and P(k) the covariance for the con-
tinuous state variables x,. The likelihood of an estimate ý:(k) is de-

A cPHA specifies a mode dependent discrete-time model for a noted by the hybrid beliefjstate h(k) [:s].
plant with command inputs ud, continuous inputs u,, continuous We perform hybrid estimation as extended version of HMM-style
outputs y,., mode xd, continuous state variables xc and additive, zero belief-state update that accounts for the influence of the continuous
mean Gaussian disturbances v., v.. The discrete-time evolution of dynamics upon the system's discrete modes. A major difference be-
x, and y, is described by the nonlinear system of difference equa- tween hybrid estimation and an HMM-style belief-state update, as
tions (sampling period T,) well as multi-model estimation, is, however, that hybrid estimation

tracks a set of trajectories, whereas standard belief-state update and
XC,(k) = f~ ,(k-1), Uý.(k-l)) + V,.(k1 (1) multi-model estimation aggregate trajectories which share the same

Yc,(k) = g(k)(xC,(k), U•O(k)) + Vo,(k), mode. This difference is reflected in the first of the following two

The functions f(k) and g(k) are obtained by symbolically solving5  recursive functions which define our hybrid estimation scheme:

the set of equations Fi(Xdl (k)) U ... U F1(Xda,(k)) given the modex T h(.k) [:s•] PTr(miz:zj.(k-l), ud,(kl))h(k_1) [:sj] (4)
Xd,(k) = [Xdl,(k),. , Xdl,(k)] .

4 E.g. sensors can experience different magnitudes of disturbances for differ- h(k) [i] = h(.k) [ii]PO (y.,(k) 1x,(k), Uc,(k)) (5)
ent modes. jh (.k) [:i]PO(Y,,(k) Xji(k), Uc,(k))

5 Our symbolic solver restricts the algebraic equations and nonlinear func-
tions to ones that can be solved explicitly and utilizes a Gr~bner Basis h(.k) [:ki] denotes an intermediate hybrid belief-state, based on tran-
approach[3] to derive a set of equations of form (1). sition probabilities only. Hybrid estimation determines for each



X:j,(k-l) at the previous time-step k - 1 the possible transitions, multi-output (MIMO) filter (see Fig. 2) for mode xdi,(k)

thus specifying candidate successor states to be tracked. Consecu- [ml, iM2 1 , m 3 1]T based on the mathematical model (3). This filter
tive filtering provides the new hybrid state ý:i,(k) and adjusts the hy- provides the hybrid state estimate ý:i,(k) as well as the value for the
brid belief-state h(k) [:i] based on the hybrid probabilistic observa- hybrid probabilistic observation function PO(y.,(k) X:i,(k), UC,(k))

tion function PO(yC,(k) Xi,(k), uo(k)). The estimate :•j,(k) with the for the hybrid estimator (see Appendix A for the extended Kalman
highest belief-state h(k) [k:j] =n max (h(k) [kJz]) is taken as the hybrid filter estimation details).
estimate at time-step k. Let us assume the mode Xdi,(k) [?,m 21 , M 3 J]T which speci-

Tracking all possible trajectories of the system is almost always fies that component 1 (At) is in unknown mode. A component in un-
intractable because the number of trajectories becomes too large after known mode imposes no constraints (equations) among its variables
only a few time-steps. In [9] we present an approximative anytime (ul and the internal variable u),1, in our case). As a consequence,
anyspace algorithm that copes with the exponential growth, as well as we cannot deduce an overall mathematical model of the form (1) and
the large number of modes in a typical concurrent hybrid automaton fail to provide the basis for the hybrid estimation scheme, the MIMO
model. filter for mode Xdi,(k) M [?, in 2 1 , m,3 1 ]T.

Hybrid estimation and other multi-model estimation schemes have
in common that they require models that are 'close' mathematical de-
scriptions of the system. They can fail severely whenever unforeseen, o_ Y__]

i.e. unmodeled, situations occur. As a consequence, we have to pro- v,1  v, 2 v 3
vide models for all operational modes as well as an exhaustive set wVo Ye2
of models for possible failure modes. Providing all possible failure u.4 AAA
models can be problematic even under the assumption of an exhaus- UA1

tive failure mode effect analysis (FMEA). For instance, consider an UC

incipient fault in a servo valve that causes the valve to drift off its CA_[

nominal opening value. The drift (positive, negative, slow, fast...) is
subject to the fault. It is surely difficult to provide a mathematical Figure 3. Example cPHA with explicit noise inputs
model with the correct parameter values that captures all possible
drift situations. Nor is it helpful to introduce a sufficiently large set
of modes that captures possible situations of the drift fault as this
would introduce additional complexity for hybrid estimation by in- However, a close look on the PHA interconnection (Fig. 3 - the

creasing the number of modes unnecessarily. figure extends Fig. 1 by including the implicit noise inputs, as well

This requirement of hybrid mode estimation is in contrast to dis- as indicating the causality for the internal I/O variables) reveals that

crete model-based diagnosis schemes, such as GDE (e.g. [5, 6, 19]). we can still estimate component 3 by its observed output Y,2 and the

Model-based diagnosis deduces the possible mode of the system observation yol as a substitute for the value of its input. This intuitive

based on nominal models, and few specified fault models only. The approach utilizes a decomposition of the cPHA as shown in Fig. 4.

onset of possible fault scenarios are covered by the so called un-
known mode which does not impose any constraints on the system's v,
variables. Vl

The next section provides an approach that systematically incor- u,,1
porates the concept of the unknown mode into our hybrid estimation A,
scheme.

I'l wv' o V 2 lv,3

3 Estimation with Unknown Modes Y' Vvooy, 2  Y

The estimation scheme [9] requires a fully specified mode assign- u 3
ment Xd, (k) for each candidate trajectory that is tracked in the course
of hybrid estimation. Only a fully specified mode allows us to deduce
the mathematical model (1) for the overall system. This model is the
basis for the dynamic filter (e.g. extended Kalman filter) that is used
in the course of hybrid estimation.

The decomposition allows us to treat the concurrent parts of the
SXdJ system independently and calculate a filter cluster consisting of 2

U,] ^~ independent filters. However, when calculating the individual filters
MXc2 for the cluster, we have to take into account that we use the mea-Yc! -- I MIMO Filter

.X,3 surement of the input to the third component (ycl) in replacement to
Y,2 its true value. This can be interpreted as having additional additive

PO noise at the component's input as indicated in Fig. 4. The following
modification of the covariance matrix Q3 for the state variables of

Figure 2. MIMO filter (e.g. extended Kalman filter) for the cPHA example A3 takes this into account:

=3 b 3 r'lb3 Q., (6)
For our illustrative 3 component example introduced above

this would mean that hybrid estimation calculates a multi-input where rl denotes the variance of disturbance v0 l and ba3 = [0, 1]7'



raw model for the system given mode xd. The following decom-
Ucl-No. Xl position performs a structural analysis of the raw model-based on

Filter 1 causal analysis[ 17, 20], structural observability analysis[7] and graph
Yl PO iler decomposition[l].

A cPHA model does not impose a fixed causal structure that spec-
Xc 2  ifies directionality of automaton interconnections. Causality is im-

e 2plicitly specified by the set of equations. This increases the expres-
Filter 2 • c3 siveness of the modeling framework but requires us to perform a

Y,2 - -- ýP 02 causal analysis of the raw model (8) as a first step. The deduc-
tion of the causal dependencies is done by applying the bipartite-

Filter Cluster matching based algorithm presented in [17]. The resulting directed

graph records the causal dependencies among the variables of the

Figure 5. Decomposed filter system (Fig. 6 shows the graph for the the illustrative 3 PHA ex-
ample). Each vertex of the graph represents one equation ci E JF

denotes the input vector6 of A3 with respect to ycl.
A filter cluster consisting of extended Kalman filters and the

MIMO extended Kalman filter are interchangeable as they provide U"-w] 1  X -- Y<, -- x• 2 -- X• 3 --- ---'P 2
the same expected value for the continuous state (E(k,)) whenever (9
the mode of the automaton is fully specified. However, the decom-
posed filter has the advantage that the probabilistic observation func-
tion P 0 of the overall system is given by Figure 6. Causal graph for the cPHA example

Po Poi, (7)

or an exogenous variable specification (e.g. U'l) and is labeled by
where Poj denotes the probabilistic observation function of the j'th its dependent variable which also specifies the outgoing edge (in the
filter in the filter cluster. following, we will use the variable name to refer to the correspond-

This factorization of the probabilistic observation function allows ing vertex in the graph). Vertices without incoming edges specify the
us to calculate an upper bound for Po whenever one or more com- exogenous variables.
ponents of the system are in unknown mode. We simply take the
product over the remaining filters in the cluster. This is equivalent Definition 4 A causal graph of a cPHA CA at a mode xd is a di-
with considering the upper bounds of the inequalities Poj < 1 for rected graph that records the causal dependencies among the vari-
each unknown filter j. In our example with unknown component A, ables v c Ui xi u uci U yci of CA. We denote the causal graph
this would mean: by Cg(CA, xa) and sometimes omit arguments where no confusion

PO <_ PO2, seems likely.

where P0 2 denotes the observation function for the filter that esti-
mates the continuous state of component A3. Goal of our analysis is to obtain a set of independent subsystems

The following subsection provides a graph-based approach for that utilize observed variables as virtual inputs. Therefore, we slice
filer cluster deduction that grounds the informally introduced decom- the graph at observed variable vertices with outgoing edges, insert a
position on a more versatile basis, new vertex to represent a virtual input and re-map the sliced outgo-

ing edges to this vertex. Fig. 7 demonstrates this re-mapping for the

3.1 System Decomposition and Filter Cluster causal graph of Fig. 6. The observed variables are yol and Yc2. Only

Calculation the vertex with dependent variable ycl has an outgoing edge, thus we
slice the graph at ycl -i xc 2 and re-map the edge to the virtual input

Starting point for the decomposition of the system for a cPHA mode uyci.
xa is the set of equations

Fl(Xl,(k)) U ... U =l(Xdl,(k)) : T(Xd), (8) Uj. IN W,- INX, --- ycl

where Fj (x4j, (k) ) returns the appropriate set of equations for a com-

ponent Ai whenever x4j,(k) E Xa4j or the empty set whenever the
component is in unknown mode, i.e. X4j,(k) =?. Although we still uyc, M. X,2 - X, 'P Yc2
have to solve the set of equations to arrive at the mathematical
model of form (1) we can interpret the set of equations (8) as the

6 In the general case, we have to calculate bj for a cPHA component Aj
and observed inputs uyc by linearization, more specifically: bj,(k) - Figure 7. Remapped causal graph for the cPHA example

Ofj/0uy•li:j,(k , where fj denotes the right-hand side of
the difference equation for component Aj, uyc refers to the observed
variables that are used as inputs to the component (i.e. uy, C y,) and
kj,(k-1) as well as Ucj,(k-1) represent the state estimate and the contin- A dynamic filter (e.g. extended Kalman filter) can only estimate
uous input for component Aj at the previous time-step, respectively, the observable part of the model. Therefore, it is essential to perform



an observability analysis prior calculating the filter so that non ob-
servable parts of the model are excluded. We perform this analysis U
on a structural basis7 .

Definition 5 We call a variable v of a cPHA CA at mode xa struc-
turally observable (SO) whenever it is directly observed, i.e. v c y,, .X 2 X -h.
or there exists at least one path in the causal graph C9(CA, xd) that
connects the variable z to an output variable y,. E y,. of CA. Figure 9. Causal SCC graph for cPHA example

A filter estimates the state variables x, of a dynamic system based
on observations Ye and the inputs ue that act upon the state variables 2. A variable in an SCC is structurally determined, if and only if all
x,. The required knowledge about the inputs u, indicates that the variables in the SCC are structurally determined.
structural observability criteria is not yet sufficient to determine the
submodel for estimation. We have to make sure, that no unknown ex- As a consequence, we can apply our structural analysis to strongly
ogenous input influences a variable. To illustrate this, consider again connected components directly and operate on the SCC graph, i.e
the 3 PHA example with mode xd [?, Mn2 1 , m3 1 ]T. Component a causal graph without loops. The analysis of a strongly connected
1 in unknown mode omits the equation that relates the variables u.i component with respect to structural observability and structural de-
and wu).. This leads to a causal graph C9Q (Fig. 8), where wu, is la- termination (SOD) can be outlined as follows:
beled as exogenous (no incoming edges). This unknown exogenous
input influences the state variable x, and, as a consequence, pre-
vents us from estimating it! function determine-SOD-of-SCC(CC, u, k)

when SOD-undetermined?(SCC)
if exogenous?(SCC)

u x - -y 1  then v, +- independent-var(SCC)

if v, c u, then SD(SCC) +- True
else SD(SCC) +- False

else V +- uplink-SCCs(SCC)
uy"1  I-_X, 2 _ X K2 loop for SCC, in V

do determine-SOD-of-SCC(SCCi, u•, k)
SO(SCC) -- True
SD(SCC) - all-uplink-SCCs-are-SD?(V)

Figure 8. Remapped causal graph for the cPHA example with unknown cluster-index(SCC) i- k U cluster-indices(V)
component AA1  SOD-determined(SCC) +- True

return Nil

We extend our structural analysis of the causal graph by the fol-
lowing criteria: Our structural analysis algorithm determines structural observabil-

Definition 6 We call a variable v of a cPHA CA at mode xa struc- ity and determination (SOD) of a variable by traversing the SCC

turally determined (SD) whenever it is an input variable of the au- graph backwards from the observed variables towards the inputs.

tomaton, i.e. v E u., or there does not exist a path in the causal In the course of this analysis we label non-exogenous strongly con-

graph C9(CA, xd) that connects an exogenous variable u, u,. nected components with an index that refers to their cluster mem-

with v. bership. This indexing scheme allows us to cluster the variables into
non-overlapping clusters with respect to the observed variables. The

Furthermore, it is helpful to eliminate loops in the causal graph direct relation between a variable, its determining equation, and the
prior checking variables against both structural criteria. For this pur- cPHA component that specified this equation leads to the compo-
pose, we calculate the strongly connected components of the causal nent clusters sought. The structural analysis can be summarized as
graph[ 1]. follows:

Definition 7 A strongly connected component (SCQ of the causal
graph C9 is a maximal set SCC of variables in which there is a path function component-clustering(CA, xd)

from any one variable in the set to another variable in the set. returns a set of cPHA component clusters
ye •- observed-vars(CA)

Fig. 9 shows the remapped causal graph for the 3 PHA example after c -remap-causal-)aph(Cg(CA, xa), ye)

grouping variables into strongly connected components.

The strong interconnection among variables in an SCC implies u - virtual-inputs(Cg) U input-vars(CA)
that: k •- strong0y-connected-component-graph(C-)

1. Structural observability of variables in an SCC follows directly loop for SCC, in output-SCCs(Cg cy., y,)
from structural observability of at least one variable in the SCC. do determine-SOD-of-SCC(SCCi, ue, k)

7 Throughout the paper we assume that loss of observability is caused by graph-clusters - get-SOD-SSC-clusters(CgScc)
a structural defect of the model. Otherwise, it is necessary to pertbrm an
additional numerical observability test [18] as structural observability only return automaton-clusters(CA, graph-clusters)
provides a necessary condition for observability.
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Each component cluster defines the observable and determined drifts towards its postitive or negative limit, nor do we know the mag-

raw model for a subsystem of the cPHA. This raw model can be nitude of the drift. A fault of this type, which develops slowly and
whose symptom is hidden among the noise in the system is a typical

solved symbolically and provides the nonlinear system of difference o w g y yp
equations (a model similar to (1), but with the additional virtual in-we
puts) that is the basis for the corresponding filter in the filter clusteri also provide explicit failure models that describe typical situations.
puts) thatis thywe basslfo the nobsrrles ndi lr indetherfitedartust. For example, the PGC has 4 plant trays with one illumination bank
In this way we exclude the unobservabte and.or undetermined parts for each tray. A black out of one illumination bank can be interpreted
of the overall system from estimation. as a 25% loss in light intensity. This situation can be modeled explic-Whenever a state variable xcj becomes unobservable and/or un- il yadnmclmdlta ae hsrdcdlgtitniyit

determined (e.g. due to a mode change) during hybrid estimation, itly by a dynamical model that takes this reduced light intensity into

we hold the value for the mean at its last known estimate and account.

i n c r e a s ed it s v a ri a n e f o t e bn at cts l a nt f torn e a t e a ch h y b rid In th e fo llo w in g w e d e s c rib e th e o u tc o m e o f a sim u la te d e x p e r i-increase its variance orj -pj~j by a constant factor at each hybrid ment where the flow regulator fault with drifting symptom is injected
estimation step. This reflects a continuously decreasing confidence mt whee the flo ator fault with d i y ms ine
in the estimate hj and allows us to restart estimation whenever the of the fo int ion anks, disin at l 90Th fault s arevariable becomes observable and determined again. of the four illumination banks, is injected at k 900. The faults are

S'repaired' at k 1100 and k 1300 for the flow regulator fault and

the lighting fault, respectively. This experiment illustrates unknown

4 Example - BIO-Plex mode detection and recovery from it, nominal failure mode detection,
and the multiple fault detection capability of our approach.

Our application is the BIO-Plex Test Complex at NASA Johnson
Space Center, a five chamber facility for evaluating biological and
physiochemical Martian life support technologies. It is an artificial, Uds

biosphere-type, closed environment, which must robustly provide all U _
the air, water, and most of the food for a crew of four without in- i A FR
terruption. Plants are grown in plant growth chambers, where they
provide food for the crew, and convert the exhaled C02 into 02. In A wcl
order to maintain a closed-loop system, it is necessary to control the J A _ 2
resource exchange between the chambers without endangering the Y,2
crew. For the scope of this paper, we restrict our evaluation to the Wd2
sub-system dealing with C02 control in the plant growth chamber u•2 I

(PGC), shown in Fig. 11.
The system is composed of several components, such as redundant

flow regulators (FR1, FR2) that provide continuous C02 supply, re- Wc
dundant pulse injection valves (PIV 1, PIV2) that provide a means for __

increasing the C02 concentration rapidly, a lighting system (LS) and Figure 12. BIO-Plex cPHA model
the plant growth chamber (PGC), itself The control system main-
tains a plant growth optimal C02 concentration of 1200 ppm during
the day phase of the system (20 hours/day).

Hybrid estimation schemes are key to tracking system operational The simulated data is gathered from the execution of a refined sub-
modes, as well as, detecting subtle failures and performing diag- set of NASA's JSC's CONFIG model for the BIO-Plex system[ 12].
noses. For example, we simulate a failure of the second flow reg- Hybrid estimation utilizes a cPHA model that consists of 6 com-
ulator. The regulator becomes off-line and drifts slowly towards its ponents as shown in Fig. 12. To illustrate the complexity of the
positive limit. This fault situation is difficult to capture by an explicit hybrid estimation problem we should note, that the concurrent au-
fault model as we do not know, in advance, whether the regulator tomaton has approximately 5su n 15000 modes. Each mode de-

tomaton thas dyaprxm atevlyto 5f 1500 chmoders.se Eyac moide de-
s Whenever a state variable x~j is directly observed we also can utilize an scribes the dynamic evolution of the chamber system by a third or-

alternative approach suggested in [15] that restarts the estimator with the der system of difference equations. For example, the nominal op-
observed value, thus improving the observer convergence time. erational condition for plant growth is characterized by the mode



xa [rnM2 , rnM,.2 , rn.•, 1, rn., rn 2 , rnp2], where rnM2 characterizes The causal graph (Fig. 13) of the raw model (9) leads to the de-
an partially open flow regulator, rnm, a closed pulse injection valve, composition of the system as shown in Fig. 14 (our implementation
rnM2 100% light on, and rnp2 plant growth mode at 1200 ppm, re- of the causal analysis and decomposition algorithms treats constant
spectively. This mode specifies the raw model: values, such as the value 1204.0 for the photosynthetic photon flux,

as known exogenous inputs with constant value). The decomposition
F1 (rn 2 ) {Jx, (k) 0.5 UI,(k_.), yu l x• r } of the model leads to a filter cluster with 3 extended Kalman filters -

F2(rnM2 ) {Xý2,(k) 0.5 UAl,(k--1), Y•2 Xý2} one for each flow regulator and one for the remaining system (pulse

!3 (rnMI) {w 0 2 0.0} injection valves, lighting system and plant growth chamber). This
enables us to estimate the mode and continuous state of the flow reg-

F4 (rnl) {wUýc, 0.0} ulators independent of the remaining system. As a consequence, an

F5 (rnM2 ) { Iw c 1204.0} unknown mode in a flow regulator does not cause any implications

F6 (rnp2 ) {x.A,(k) X 03,(k-1) + 20.163. on the estimation of the remaining system.

[c1.516 .10-
4 f (W,(k-1))f 2 (Xc;3,(k-1))± cluster I FRI}

Yl,(kAl) + Yc2.(k-l) + cUcl,(k1) + WU)2,(k-l)], a - Y

(9) lcuster 2 1FR2

where fl and f2 denotes c•, Yiq

fi(w. ) : 7.615 + 0.111 u;0 i 2.149 . 10-5 V2Y cluster3 {PIVI,PIV2, LS, PGC}

f2(X,;) 72.0 78.89 .. ,3 /400.0.(10) L y 3

XcI(k) and X,2,(k) denote the gas flow ([g/min]) of flow regulator Iw 1
and 2, respectively and X0 3,(k) denotes the C0 2 gas concentration 1204.0
([ppm]) in the plant growth chamber. uWcl,(k) and W,2,(k) denote the
gas flow ([g/min]) of the pulse injection valves and uwC3,(k) denotes [

the photosynthetic photon flux ([ji-mol/m 2 s]) of the lights above the
plant trays. The nonlinear expression

1.516. 10-4f (U), ,( 1))f 2 (Xc 3 , ( 1) Figure 14. Partitioned causal SCC graph of the BIO-Plex cPHA model

approximates the C0 2 gas production [g/min] due to photo-
synthesis according to the C0 2 gas concentration and chamber Fig. 15 shows the continuous input (control signal) uno,, observed
illumination[12]. This raw model defines a third order system of flow rates for flow regulator 1 and 2 and the C0 2 concentration for
discrete-time difference equations with sampling period Ts 1 the experiment. Both flow regulators provide half of the requested
[min]: gas injection rate up to k 700. At this time point, the second flow

regulator starts to slowly drift towards its positive limit which it will
Xl,(k) 0.5 "L,(k--1) ± V~,(k--) reach at approximately k 800. The camber control system re-

X0 2,(k) 0.5 U•,(k-1) + V,2,(k-I) acts immediately and lowers the control signal in order to keep the

X0 -3,(k) x XO.(k-1) + 20.163[-1.041+ C0 2 concentration at the requested 1200 ppm concentration. This

½ _k)/ 0 transient behavior causes a slight bump in the C0 2 concentration
1.141- / + Xcl,(k-1) - Xc2,(k--)] + V3..(k-l) as shown in Fig. 15-b. Our hybrid mode estimation system detects

Y,1,(k) Xc,(k) + Vol,(k) this unmodeled fault at k 727 and declares flow regulator 2 to be

Y,2,(k) x 2 ,(k) + vo2 ,(k) in an unknown mode (we indicate the unknown mode by the mode

Y0 2,(k) x•.O(k) + Vc,3 ,(k), number 0 in Fig. 16). The flow regulator mode stuck-open (rnM5 ) be-
(11)

Flow Regulator 2 Estimation Detail

1204.0 W
4-

SW .2 El 3 . ..

0.0 WW 2
3 E

U"- '-w X, - Ye X,0- e

650 700 727 750 769 800 850Stime i mrnlutes]

X,2 - Y,2 Figure 16. Mode estimate detail for flow regulator 2

Figure 13. Causal graph of the BIO-Plex cPHA raw model (9)
comes more and more likely as the regulator drifts towards its open
position. Hybrid mode estimation prefers this mode as symptom ex-
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Figure 15. Observed data and continuous estimation of the C02 concentration in plant growth chamber

planation from k 769 onwards, although flow regulator 2 goes The hybrid estimator uses a cPHA description and performs decom-
into saturation a little bit later at k 800. position and estimation, as outlined above. Decomposition is done

The light fault at k 900 is detected almost instantly at k 904 on-line according to the mode hypotheses that are tested in the course
(M,14). This good discrimination among the pre-specified modes of hybrid estimation. In general, it can be assumed that the the mode
(failure and nominal) is further demonstrated at the termination in the system evolves on a lower rate than the hybrid estimation
points of the faults. Repairs of the flow regulator 2 and the lighting rate, which operates on the sampling period T_. Therefore, we cache
system are detected immediately at k 1101 and k 1301, re- recent decompositions and their corresponding filters for re-use as
spectively. Fig. 17 shows the mode estimation result for the lighting a compromise between a-priori calculation (space complexity) and
system and flow regulator 2 over the entire experiment horizon, pure on-line deduction (time complexity).

Optimized model-based estimation schemes, such as
6 FlowRegulator 2 Livingstone[22], utilize conflicts to focus the underlying search
5 -operation. A conflict is a (partial) mode assignment that makes a

-4 hypothesis very unlikely. This requires a more general treatment
"of unknown modes compared to the filter decomposition task

2 introduced above. The decompositional model-based learning

system Moriarty[21] introduced continuous variants of conflicts,

so-called dissents. We are currently reformulating these dissents for
60o • 0 I0 10'00e 11'00 12i00 1300 14[00 hybrid systems and investigate their incorporation to improve the

Lighting System underlying search scheme. This will lead to an overall framework
6 that unifies our previous work on Livingstone, Moriarty and hybrid

estimation.
-4
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A Extended Kalman Filter

The disturbances and imprecise knowledge about the initial state

x.,(5)) make it necessary to estimate the state by its mean xo,(k)

and covariance matrix P(k). We use an extended Kalman filter[2]
for this purpose, which updates its current state, like an HMM ob-

server, in two steps. The first step uses the model to predict mean

for the state R:,(.k) and its covariance P(.k), based on the previous


