
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP012695
TITLE: Computng Minimal Conflicts for Rich Constraint Lanuages

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Thirteenth International Workshop on Principles of Diagnosis
[DX-2002]

To order the complete compilation report, use: ADA405380

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

-he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP012686 thru ADP012711

UNCLASSIFIED

Computing Minimal Conflicts
for Rich Constraint Languages

Jakob Mauss' and Mugur Tatar1

Abstract. We address here the following question: Given an systems of equations where local value propagation is not enough
inconsistent theory, find a minimal subset of it responsible for the for solving, TMS-based architectures usually become a heavy
inconsistency. Such conflicts are essential for problem solvers that machinery that consumes considerable amounts of time and
make use of conflict-driven search (cf, [2, 4, 9]), for interactive memory (see also [17]) and, in the end, still do not have any
applications where explanations are required (cf, [16, 22]), or as
supporting tools for consistency maintenance in knowledge-bases guarantees for conflict minimality the minimality is (at most)
(cf. [11]). Conflict computation in Al applications was usually guaranteed with respect to the propositional clauses that represent

associated with dependency recording as performed by TMSs (cf the dependencies and not with respect to the semantic of the
[2, 3, 18]). This techniques, however, have a rather limited original constraint language. The following example is an attempt
applicability for languages that go beyond the expressiveness to illustrate this. Consider a system of five algebraic constraints
power of propositional logic. For more powerful languages and A, - x > 4 A3 - y > 2 A5 - x> 2 y I 1
solvers constraint suspension appeared, until now, to be the only A2 - x < 5 A4 - y _ 2
available alternative for the computation of minimal conflicts.

We present here an algorithm for computing minimal conflicts A solver may process these constraints in 4 steps as shown in
that can be used with powerful constraint languages, e.g. possibly Figure 1. In step (, they are discovered inconsistent. A minimal
including finite and non-finite variable domains, algebraic and FD conflict among the given constraints is { A2 , A3, A5 }. If the solver
constraints, etc. The conflicts are extracted post mortem from the were using dependency recording it would not find the above
proof (a tree with inferences of the form A A B = C) that lead to minimal conflict -just the trivial {AI, A2 , A3, A4, A5 } in this case!
the derivation of the inconsistency by an informed search that
computes and generalizes conflicting relations. The algorithm is A[1 A345
based on a simple but powerful principle that allows to recursively
decompose the minimization problem into smaller sub-problems. x G45)
This principle can also lay the foundation for efficient constraint

suspension algorithms that can be used in case no intermediary A l0 A A2 A34 (3) A5
results are cached during the constraint solving, i.e. in case no x>4 x<5 y = 2
proof structures are available.

1 INTRODUCTION y !

For problems expressed using propositional logic or using finite- Figure 1. Tree for proving the inconsistency of 5 constraints.
domain (FD) constraints there exist some efficient solutions for the Of course, this was a just simple example where no symbolic
computation of conflicts and explanations (cf [13, 16, 18]).
Unfortunately, this is not the case for more expressive constraint variable elimination was required and, for the above example, onelangage. De t th scpe f or apliatin itersts naely can easily define a strategy to handle correctly the conflict
languag .es. Due .to the scope of our application interests, namely computation - for instance by maintaining separate dependencies
supporting engineering tasks such as safety and diagnosability for lower and ufer bounds of intervals as in [6]. However, this
analysis and also design and configuration (cf. [12, 15, 20, 22]), unnecer ovepperloads olvintervalss in case of thiswe ae epecallyintresed n moelig lnguges deqatefor unnecessarily overloads the solving process in case of consistency
we are especially interested in modeling languages adequate for and, still, would not solve the problem in general.
engineering problems. Such languages have to mix logical and FD In st, wouldenotes o f the p aper is general.In contrast, the key idea of this paper is to do a (guided) post
constraints with (more or less) classical systems of linear and non-
linear algebraic or even differential equations. The general purpose conflicts. The alorithmn uses the information that A345 is

techniques that can be applied in this case for the (minimal)
conflict computation are constraint suspension (cf [7]) and TMS- conflicting with A12 (we say that A345 is a conflicting relation for
like dependency recording (cf. [3]). Constraint suspension can A12) and propagates and updates these conflicting relations
guarantee conflict minimality, but it is in many cases too through the proof tree in order to select only those parts of it that
guarantconvenien t dueto the large amot is tinman sequ too are really contributing to the conflict. The paper is organized asinconvenient due to the large amount of time required to follows: in section 2 we present the basic procedure for extracting
recompute many subsets of the initial problem. When applied to a minimal conflict from a binary proof tree. In section 3 we

describe how a constraint solver can control the inferences in order
DaimlerChrysler AG, Research and Technology, RIC/EK to easily provide such trees. In section 4 we report some first
Alt-Moabit 96a, D-10559 Berlin, Germany. empirical results regarding the performance of the algorithms.
Email: {jakob.mauss, mugur.tatar}@DaimlerChrysler.com Section 5 concludes the paper with a comparison to related work.

2 COMPUTING MINIMAL CONFLICTS This case analysis leads to the following procedure for extracting a

We assume in the following a relational framework, i.e. constraints minimal conflict from a proof tree.

are noted as relations over variables with finite or continuous Specification: Let

domains. These relations may be represented extensionally (as in R be a non-empty set of relations (assumptions)

Figure 4), or intensionally using formulas (as in Figure 1). In A the root of a binary proof tree with the leaves given by R

relational terms, 'A' represents the join (intersection) of relations, B a conflicting relation for A, i.e.: B # _ and A A B =.

falsity 'l' is represented by the empty relation, and the implication The proof tree satisfies the requirement that, for any non-leaf node

A • B is interpreted as subset relation A c: B. A set of constraints A: lefi(A) A right(A) = A.
_ ~The procedure XCI1(A, B) returns one minimal and non-empty

forms a conflict if it is not satisfiable, i.e. in relational terms, if the se M rcRsuch thatAM B r .uAs one quence, if Aoismth

join of the relations representing the constraints is the empty rot M

relation. Given an initial set of inconsistent constraints, we are of a refutation tree then XC I(A, T) returns a minimal conflict

interested in extracting a minimal conflict, i.e. a minimal subset from the tree - where T represents the universal relation i.e. the

that is still inconsistent. Of course, there can be more than one complement of 1.

minimal conflict in an inconsistent context, but we focus for the XCi (A, B)

moment on finding just one such minimal conflict. In the (D if (isLeaf (A)) return { A
A, <-- left(A)

following, we show how to extract a minimal conflict from a A2 <-- right (A)
binary proof tree such as the one shown in Figure 2. The initial C<- Al A B
constraints appearing as leaves in the proof tree are also called C2 <-- A2 A B
assumptions in the following. T if (C, _ L and C2 1 /) return XCI(A 1,B)

0 if (C, I and C2 1 I) return XCI(A 2 ,B)[1 falsity () if (Ci _ I and C2 1 I) return XCI(A 1,B)
A B 0 conclusion or return XCI(A 2 ,B)

U assumption (if (C1 • I and C2 1 -)

M1 <-- XC1(A,, C2)
M2 <-- XC1 (A 2 , (AM1) A B)

return M, U M2

In case (the procedure first descends in the sub-tree A, with C2Figure 2. Tree proving the inconsistency of 11 assumptions, as conflicting relation. Before it descends in the sub-tree A2 we,

Assume that we have two conflicting relations A, B, none of them however, have to generalize A, to AM, and CI to (AM 1) A B. This
being empty, i.e. A # 1, B # 1, and A A B = I. Then we have to is necessary in case we have several minimal conflicts that span
consider two cases. over the sub-trees A, and A2 in order to select from A2 a sub-

1. A and B are both assumptions. In this case, {A, B} is the conflict that is part of the same conflict as the sub-conflict that was

minimal conflict. non-deterministically chosen (case ®) from the sub-tree A1. Such a
case is also illustrated by the following example.

2. At least one of A, B is not an assumption. Assume without loss Example Consider the set R = {A, ... A5 } shown in Figure 4.
of generality that A has been derived from A1 and A2, i.e. The constraints are extensionally defined relations in this example.
Al AA 2 A. Letnow: C :=Al AB andC, :=A, AB. Wecan E.g. A1 - '(x= a A y= 1) v (x=b A y= 0)'. R is inconsistent,
then distinguish 4 cases, as shown in Figure 3. actually it contains two minimal conflicts. Figure 5 shows how

1. B 2. 3. 4. XC1 computes one of them. Circled numbers correspond to the
five cases marked in the pseudo code above.

GA1~a A~ m ~ minimal conflicts

Figure 3. Four cases distinguished by computing intersections. {A1 , A3 , A5} X A
Each relation is depicted as a set of variable assignments. {A2 , A4, A5} _-- 0]

2."1: C = LA C2 #L In this case, the assumptions leading to the XAt A

derivation of A, do not contribute to the conflict with B.
Consequently, we can prune the whole sub-tree A2 and X Y b 0 0 Y h 0 0
continue the conflict search in A1. h0 A6 b0 b0 A7 h0

2.2: C1 #_ IA C2 = L Analog to case 2.1. A1 can be ignored. A, A2 A3 A4

2.3: C1 = L A C2 = L There are at least two independent
conflicts with B, at least one in the sub-tree A,, and at least one Figure 4. A proof tree for R = {A,, A2, A3, A4, As}

in A,. If we want to find just one conflict then we can non- The crucial part of the procedure is handled in case (, where a

deterministically decide to skip one of the sub-trees, minimal conflict is composed as a disjoined union of two sets MI
and M2 computed using the left and right sub-tree. Note that the

2.4:bC1 I A Cr e I All minimal conflicts are spread across second set M 2 depends on the first set MI. During the recursive
both sub-trees. A minimal conflict has to be composed from a call at A 6 the procedure non-deterministically decides to select the
partial solution retrieved from the sub-tree A2 and an conflict containing A,. This decision is reflected in the arguments
appropriate completion retrieved from the sub-tree A 2. If B was of the succeeding call at A7 in order to select the right sub-conflict
a conflicting relation for A, then C, is a conflicting relation for - i.e A3 and not A 4 which could be erroneously selected if we did
A2 and C2 is a conflicting relation for A,. With these new
conflicting relations we can descend recursively in the A,, A2

sub-trees and collect the sub-conflicts.

Some properties of XC 1 that are worth discussing are: (4) There are several obvious improvements of the efficiency of
(1) During top-down traversal of the proof tree, only direct fathers XC 1 as given above. If the proof structure is a tree then M1 U M2

of the nodes contained in the returned minimal conflict are visited, can be computed as a disjoined union in case (. If case ® is
Sub-trees not involved in the minimal conflict are pruned without always mapped to (say) case T then the computation of C2 is
investigating their nodes. The worst-case appears when the pruning required only if C1 # 1. The repeated A computations AMI can be
is not effective and we have to inspect the whole tree (always in avoided if XC 1, in addition to returning the set M, also returns the
case (). For a tree with n leaves there are no more than 4(n-1) join AM, which allows for an incremental computation of the
joins for the worst case (see also the incremental computation of conjunction in case @. Moreover, the generalization of the
AMI later on). However, the complexity of the conflict conflicting relation C1, i.e. (AMI) A B in case @, is required only
minimization crucially depends on the complexity of the basic join if it is a strict generalization, i.e. if M1 is a strict subset of the
operations. leaves of A1 .

XC1(Ag, T)
C1 <-A8 3 DERIVING PROOF TREES
C 2 <-A 5

M- XCl (A., A5) In the previous section we have seen how to extract one or several
C,-A5^A,= ____ minimal conflicts from a proof structure. In this section we sketch

how a constraint solver operating on a set R of input relations can

C2 - A5, A7 =• control the inference in order to
M1 -XC1(A 6, • 1. check whether Ris consistent, i.e. whether AR IL

C, <-L 2. solve R for any variable
C2 _ L 3. provide the proof structure required for conflict computation.
return XC1(A,, • F Conflict computation using XC1 works however with any well-

return {Al 1 formed proof structure, irrespective if the proof was generated by a

solver like the one described in this section or not.

SXCA, I We note with V(A) the set of variables constrained by a relation
A. 2c(A, X) denotes the projection of A onto a variable set X. The

C2 71 projection 7r(A, X) results from eliminating all variables V(A) \ X

return XC1(A 3, 0) from the relation A. For example, if
return {A.} A x

2
+y

2
< 1 B_(x-l) 2

+y
2

< 1

return {A, As} then 7c(A A B, {x}) '0<xAx<1'

and 7c(AAB, {y}) =- <yAy< '.
M2 -[XC1(A5, A8) The projection operation is an abstraction (generalization)

return { A5 I operation, i.e. A * 7c(A, X). Hence, the computation

return {A,, A 3, As} C :=/ (A A B, X) can be seen as an inference of the form

Figure 5. Trace of computation of a minimal conflict A A B > C. We call such an inference, i.e. projecting the join of
two relations A and B onto a variable set X, an aggregation.

(2) An inference engine will be unable in general to provide The computed proofs will contain aggregations as the only kind
complete implementations of the join and empty-check operations of inference. The proof structures will be used to derive minimal
- for instance in case we are dealing with systems of non-linear conflicts, or minimal explanations of variable solutions.
equations. When used in conjunction with a correct but incomplete The consistency check, may seem trivial to specify. We could
inference engine, XC 1 may return a non-minimal conflict. The simply ask the solver to compute AR to check whether AR # 1.
conflict 'minimallity' is only relative to the completeness degree of However, in the practical applications with which we are
the inference services supplied by the solver, commonly confronted, R may contain hundreds of algebraic and

logical constraints with thousands of variables. In this case, the
/ X intermediate relations created during the computation ofAR would

F 0 be huge. Instead, following [1], after computing a single
" \ conjunction A A B, we eliminate all those variables from the resultE C

C I \that do not occur in the remaining relations. Consequently, the
A B intermediate relations remain 'small' - the size depending, of

Figure 6. Two minimal conflicts {B, D} and {A, C, D} course, on the degree of connectivity of the constraint network.
This works fine, as long as a variable is shared by a relatively small

(3) The procedure can easily be extended to return several minimal number of constraints. If the connectivity degree increases (cf,
conflicts instead of only one. Basically, in case ®, one can induced width w* in [5]), then many of the aggregations degrade
continue search in both sub-trees, instead of non-deterministically to simple joins and the approach is likely to become inappropriate.
choosing one of them. However, this simple extension of XC 1 will
not always return all of the minimal conflicts. See Figure 6 for an
example. The second conflict { A, C, D } is missed, when using the 2 Such proof structures can be recovered, for instance, also from the
given proof tree. Anyway, the computation of all minimal conflicts well-founded-support recorded by a TMS (cf. [18]) - in which case XCI
from a context can require significantly more effort and is seldom uld be used for further conflict minimization (recall that a TNS
justified in practice. guarantees minimality only with respect to propositional dependencies and

not with respect to the more expressive constraint language).

The creation of a proof tree for the consistency check is given by 4 APPLICATION AND EMPIRICAL RESULTS
the following procedure. We have recently finished a prototype implementation of a
Specification: Let R be a non-empty set of assumptions, _L 6 R. Relational Constraint Solver (RCS) that follows the principles
Then the procedure isConsistent(R) returns true, iff R is satisfiable. described in this paper, including the computation of explanations

isConsistent (R) and conflicts. RCS is already integrated in our environment for
if (IR = 1) engineering knowledge management, and its integration in MDS

return true
else [12] is planned to follow.

choose {A, B} c R In this section we compare XC1 with the conflict computation
S -- R \ {A, B} based on naive constraint suspension. Let R be an inconsistent set
X 4- (vars (A) u vars (B)) r) (u vars (S)) of relations. Then the procedure MC(R, {}) returns a minimal
C 71- g(A A B, X)
if (C = 1) return false conflict, computed by constraint suspension.

return isConsistent(S U { C }) MC(R, M)
vars(A) if R = {} return M

if (A is a leaf) else choose A e R
return V(A) if A(R U M \ {A})) 1

else return MC(R (Al, M)
else return MC(R \ {A}, M)< {}

return vars(left(A)) u vars(right(A)) else return MC(R \A}, M U (A)

Obviously, the procedure isConsistent computes a proof tree The procedure MC resembles Junker's ROBUSTXPLAIN [8], which

containing aggregations as the only kind of inference. Therefore, may use a trailing-mechanism not described in [8] to perform

we call this an aggregation tree. If A is the root of an aggregation incremental (i.e. fast) consistency checking. If R1 = n and a

tree for an inconsistent set R of assumptions then, as shown in consistency check for R requires n aggregations, then MC(R, { })

section 2, XCI(A, T) returns a minimal conflict. To keep the needs 0(n2) aggregations for computing a minimal conflict. In

conflicting relation B small, we may add a projection step contrast, XC1 requires only 0(n) aggregations for the same task,

B -- 7c(B, vars(A)) as first instruction in XCL. The strategy used given an arbitrary, not necessarily balanced tree. Our

to choose a pair of relations for aggregation may for example implementation of MC uses an incremental consistency check as

minimize the variable set X, or try to achieve a balanced tree. explained in section 3 - thus, a check requires only O(log(n))

For checking the consistency of n assumptions, isConsistent instead of 0(n) aggregations in the best case.

computes n - I aggregations. A significant feature of proof trees as so s, S2 S3 S4 S5 S6 S7

derived above is their ability to support incremental context co -VA.VA, -'VA, c' VA, C6 VA, C7 VA7 -

analysis. Assume we have performed a consistency check for a set x0 Yo X1 Y1 X2 Y2 X3 Y3 X4 Y4 X5 Y5 X6 Y6 X7 Y7

R of n assumptions, and we want to analyze a second context R, Figure 7. An 8-bit full adder
constructed by replacing an assumption A in the proof tree for R
by a new assumption B with the same variable set. In order to For the empirical comparison, we used a set R of 137 relations,
check the new context R u {B} \ {A}, we only have to re-compute representing eight 1-bit full adders connected in series as shown in
the inferences on the path from A to the root of the proof tree, i.e. Figure 7, and the assignments co = 1, and for 0 _< k _< 7: xk = 0,
if the proof tree is balanced, we only have to compute log(n) yk = 1. If we add one more relation of the form Ck = 0, then R
aggregations. As we see next, the computation of variable becomes inconsistent and contains a minimal conflict M of size
solutions can be performed using aggregations as well. M1 = 2 + 3 k. This gives us 8 different sets Rk of size 138,

Specification: Let R be a non-empty consistent set of containing a minimal conflict M of size 2 + 3 k.
assumptions, and A the root of an aggregation tree computed by conflict detection MC XCl t(MC)
the procedure isConsistent. Then the procedure solve(A, T) MI n A, 7 A 71 A 71 t(XCI)

computes for every variable x in R the solution S[x] := [(AR, {x}). _,_t

2 8.5 59.1 95.7 91.6 8.8 3.5 446
solve(A, B) 5 32.6 120.8 76.2 59.4 31.4 13.9 12

if (A is a leaf) return
B <-- T(B, vars(A)) 8 52.4 129.1 108.3 80.4 52.5 22.9 6.9
A, <-- left (A) A2 ý- right (A) 11 70.5 131.5 140.4 103.6 72.8 31.5 6.4
A12 <- Al A A2 14 93.0 133.6 178.5 130.1 93.9 40.4 5.4
X <- vars (A,) u vars(A2) \ vars(A)
for each x c X 17 107.7 134.9 208.5 151.1 113.5 48.3 4.1

S[x] ý- nc(A1 2 A B, {x}) 20 122.6 135.8 247.5 179.8 131.3 55.7 2.5
solve(A,, A12 A B) 23 134.8 136.7 278.3 201.0 151.8 63.7 1.3
solve(A2 , A12 A B)

Figure 8. Empirical results
If we take a closer look at the procedure solve, we note that each
S[x] is the root of a proof structure defined by a sequence of For each k isConsistent(Rk) is run for consistency check and it

aggregations. In this case the proof is not purely a tree, it is returns a refutation tree that is used as input by both MC and XC 1.

actually a DAG because some nodes are used more than once. The leaves of this tree represent an initial (not necessarily minimal)
Still, the proof is well-formed, i.e. there are no cyclic justifications. conflict of size n - see Figure 8. The table gives the average results

XC1 can be modified to cope with the DAG structure. The obtained for running both algorithms 100 times for all eight Rk.
resulting procedure XEI(S[x], -S[x]) returns a minimal For each run, we permutated the order of the input relations which

supporting set of assumptions for the solution of x, i.e. a minimal resulted in different structures of the derived aggregation trees. The

subset E c_ R such that S[x] = 7[(AE, {x}). columns in the table denote the average number of join and project

operations needed for conflict detection in isConsistent and by the the one of RCS. One weak point, however, of the available
subsequent minimization call to MC or to XC I. The last column computation techniques that are not based on conflicts is that they
gives the ratio of the measured runtimes for MC and XC 1. For basically address static problems. It would be interesting to see if
example, for the case of a minimal conflict of size 2, the average the ideas of the temporal decomposition that can be applied for
initial conflict provided by isConsistent has size 8.5 and it takes computing minimal conflicts (cf. [14]) can be also applied for the
59.1 aggregations (join followed by project) to detect the conflict, direct computation of diagnoses or interpretations.
MC needs then 95.7 more joins and 91.6 projections to minimize Although we discussed here about the computation of minimal
the initial conflict by suspension, while XC1 is 446 times faster conflicts, in practice minimality and completeness have to be
than MC and needs only 8.8 joins and 3.5 projections for the same traded against efficiency. Nevertheless, sometimes the definition of
task. The performance gain of XC1 relative to MC depends the application (minimisation, compilation, explanation, etc)
strongly on the structure of the proof trees supplied by the solver - require a higher degree of completeness that is more important
i.e. whether the conflicting assumptions are uniformly spread than the computation times.
among the leaves of the tree or whether they are clustered in a few
sub-trees. REFERENCES

[1] Y. El Fattah: An Elimination Algorithm for Model-based Diagnosis.
5 RELATED WORK AND DISCUSSION Dx98, Cape Cod, USA, pp. 47-54, 1998.

Dependency recording, like the one performed by TMSs (cf [2, 3, [2] K. Forbus, J. de Kleer: Building Problem Solvers. MIT Press, 1993.

18]) works relatively fine as long as we stay in a propositional [3] J. de Kleer: An Assumption-based truth maintenance system.

framework (or, anyway, in a finite world). In more expressive Artificial Intelligence, 28, pp. 127-162, 1986.
frameworks these technywayique adualewom) bnoth e[4] J. de Kleer, B. Williams: Diagnosing Multiple Faults. Artificialframeworks these techniques gradually become bothInelgc,32p.971018.

veryresurceconumig (i tie an spce)Intelligence, 32, pp. 97-130, 1987.
"• very resource consuming (in time and space) [5] R. Dechter: Bucket Elimination: a Unifying Framework for
"• incomplete with respect to the more expressive framework. Reasoning. Artificial Intelligence, 113, pp. 41 - 85, 1999.

Constraint suspension is another technique used for conflict [6] D. J. Goldstone: Controlling inequality reasoning in a TMS-based
computation. It is in general expensive because it relies on analog diagnosis system. 9 h Nat. Cont On Al, pp. 512-517, 1991.
performing the consistency check many times for different subsets [7] R. Bakker, F. Dikker, F. Tempelman, P. Wognum: Diagnosing and

of the initial problem. A recent enhancement to constraint solving over-determined CSP. Proc. 1JCAI-93, 1993

suspension is the one reported in [8]. The performance of the [8] U. Junker: QUICKXPLAIN: Conflict Detection for Arbitrary

conflict computation is improved there in two ways: Constraint Propagation Algorithms. 1JCA1'01 Workshop on
Modelling and Solving Problems with constraints, pp. 75-82, 2001.

(a) by adding the constraints to the solver's store one after the [9] N. Muscettola, P. Nayak, B. Pell, B. Williams: Remote Agent: To
other and performing each time a complete consistency check, boldly go where no A] system has gone before. Artificial Int., 103,
one knows that the last constraint added that caused the store pp. 5-47, 1998.
to become inconsistent is part of all conflicts from the already [10] G. Gottlob, N. Leone, F. Scarcello: A comparison of structural CSP
considered subset; and decomposition methods. Artificial Int., 124(2), pp. 243-282, 2000.

(b) by employing an intelligent search, where sets of constraints [11] A. Fleming, G. Friedrich, D. Jannach, M. Stumptner: Consistency-
are simultaneously suspended and then are binary split if based Diagnosis of Configuration Knowledge Bases. ECAI-2000,

necessary. Berlin, 2000.
The proof structure corresponding to the control strategy assumed [12] J. Mauss, V. May, M. Tatar: Towards Model-based Engineering:
Theproof istalinaructure oresponding d to t enontrol strteg assqumedl Failure Analysis with MDS. ECAI-2000 Workshop W31, 2000.
by Junker is a linear tree. We do not need to enforce the sequential http://www.dbai.tuwien.ac.at/event/ecai2000-kbsmbe/papers.html
consistency check as assumed by (a). We can assume any [13] F. Bouquet, P. Jegou: Solving over-constrained CSP using weighted
clustering technique, such as the ones resulting after structure OBDDs. Proc. Over-Constrained Systems, Lecture Notes in
analysis, e.g. cycle-cutset, hypertree decomposition, etc. (cf [10]), Computer Science, Vol. 1106, Springer, Berlin, 1996.
and thus take advantage of the performance improvements for [14] M. Tatar: Diagnosis with cascading defects. ECAl-1996, 1996.
constraint solving enabled by these methods. Our solution suits [15] M. Tatar: Model-based failure analysis in engineering - an
better the solvers employing such decompositions or the solvers experience report. Invited talk at Dx 2001. Available at request.

that are recording (at least partially) their proof structures in order [16] J. Amilhastre, H. Fargier, P. Marquis: Consistency restoration and

to support incremental operation. Although developed explanations in dynamic CSPs. Artificial Intelligence 135, 2002.
independently and using quite differing notations, the principle [17] G. Katsillis, M. Chantler: Can Dependency-based Diagnosis Copewith Simultaneous Equations? Dx97, France, 1997.
underlying the decomposition of the conflict minimization [18] D. McAllester: Truth Maintenance. AAA1-90, pp. 1109-1116, 1990.
problems is the same for our XC1 and for Junker's QUICKXPLAIN [19] W. Nejdl, B. Giefer: DRUM: Reasoning without conflicts and
algorithm. After several years of trying to improve constraint justifications. Dx94 , pp. 226-233, New Paltz, NY, 1994.
solving and dependency recording (cf. [15]), the existence of such [20] M. Tatar, P. Dannenmann: Integrating Simulation and model-based
simple and general algorithms for minimal conflict computation Diagnosis into the Life Cycle of Aerospace Systems. Dx99, Loch
came for us as a surprising positive result. Awe, Scotland, 1999.

One of our main application areas is model-based diagnosis. [21] M. Stumptner, F. Wotawa: Diagnosing tree-structured systems.

We do not argue here that one should perform diagnosis by always Artificial Intelligence, 127, pp. 1-29, 2001.
first computing conflicts and then generating minimal / preferred / [22] F. Feldkamp, M. Heinrich, K.-D. Meyer-Gramann: SyDeR - System

Design for Reusability. AI-EDAM Special Issue on Configuration
etc. diagnoses. Several authors point out that the direct Design. Sept. 1998.
computation of diagnoses can be more efficient (cf [16, 19, 21, [23] A. Darwiche: Decomposable Negation Normal Form. Journal of
23]). The ideas from an algorithm such as TREE* (cf [21]) can be ACM, July 2001.
probably easily adapted to a general relational framework such as

