
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP012692
TITLE: Merging Indiscriminable Diagnoses: an Approach Based on
Automatic Domains Abstraction

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Thirteenth International Workshop on Principles of Diagnosis
[DX-2002]

To order the complete compilation report, use: ADA405380

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

-he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP012686 thru ADP012711

UNCLASSIFIED



Merging Indiscriminable Diagnoses:
an Approach Based on Automatic Domains

Abstraction
Pietro Torasso, Gianluca Torta
Dipartimento di Informatica

Universith di Torino
Torino (Italy)

e-mail: {torasso, torta}di, unito it

Abstract. The paper presents an approach suitable for on- exist guidelines for creating models suitable for troubleshoot-
line diagnosis, which aims at automatically abstracting the ing (see e.g. [8]) as well as methods for suggesting the place-
domains of discrete variables in the model (i.e. behavioral ment of enough sensors in the system to guarantee that only
modes of system components) in order to keep only those one or a few admissible diagnoses will be returned in each sit-
distinctions that are relevant given the available observations uation (see for example [15]); sensors failures can be handled
and their granularity, by an adequate level of redundancy.
In particular the paper describes an algorithm which iden- Finally, the encoding of large sets of diagnoses in a compact
tifies indistinguishable behavioral modes by taking into ac- way can at least alleviate the explosion of time and space
count specific classes of available observations and derives an required to compute and handle such large sets (see [11]).
abstract model where such modes are merged and the domain Unfortunately, all these approaches only provide a partial
model is revised accordingly. solution; while preference criteria, cleverly written models and
By considering increasingly restricted classes of available ob- compact encoding do not guarantee that the reduced set of
servations (and/or granularity of observations), a set of ab- diagnoses is small enough in all situations, exhaustive sensor
stract models can be derived that can be exploited through placement may be too expensive or just impossible because
model selection each time a new diagnostic problem has to be the device design is already frozen.
solved. In off-line diagnosis, there's an additional possibility: when
The approach has been tested within the framework of a di- the number of diagnoses returned on the basis of available
agnostic agent for a space robotic arm, and experimental re- observations is too high, further discriminant measures can
sults showing the reduction in the number of diagnoses are be automatically suggested and manually taken until a satis-
reported. factory level of discrimination is reached. Effective techniques

based on information theory and probability have been de-
vised to support this process (e.g. [7]). However, for on-board

1 Introduction diagnosis, this approach is inadequate since in most cases the

Model based diagnosis has been applied successfully to auto- only available measures are provided by sensors and taking

matic on-board diagnosis problems in a variety of domains, further measures manually is out of question.

including automotive and space missions ([1], [10]). In this paper we present an approach suitable for on-board

While many problems are common to off-line and on-line diagnosis, which aims at automatically abstracting the do-

diagnosis, the latter presents some peculiar challenges, the mains of discrete variables in the model (i.e. behavioral modes

most apparent of which concerns the tough constraints on of system components) in order to keep only those distinc-

computational resources and time ([3]). tions that are relevant given the available observations and

Another difficult problem both on-line and off-line diagnosis their granularity. As we shall see, this can significantly reduce

have to deal with is the potentially large number of alterna- the number of returned diagnoses.

tive diagnoses returned by a diagnostic system when a specific The paper is structured as follows. In section 2 we in-

problem has to be solved. troduce some definitions, in particular the notion of indis-

One classical way of addressing this problem consists in defin- tinguishability among the behavioral modes of a component.

ing preference criteria among diagnoses, usually based on In section 3 we present an algorithm which identifies indis-

some form of minimality (see e.g. [6]) or probability, so that a tinguishable behavioral modes by taking into account specific

number of admissible diagnoses can be discarded because of classes of available observations and derives an abstract model

their implausibility . where such modes are merged and the domain model is revised

We can also approach the problem not at diagnosis time, but accordingly. Section 4 discusses some ways the algorithm can

at earlier time (i.e. during system design and modeling): there be used effectively in diagnostic problem solving.



In section 5 we report experimental results obtained by im- Since in our definition, OBS' is (in general) a partial instan-
plementing and running the algorithm on the model for a tiation of OBS, we can introduce the notion of diagnoses that
space robotic arm. Finally, in section 6 we briefly review can't be discriminated given OBS' but that may be discrim-
other approaches in the literature and underline similarities inated if more observables were available:
and differences with respect to our own.

Definition 2.5 Given a diagnostic problem DP :

2 Basic Definitions (SDD,OBS',CXT}, let us suppose that H1 and H2
are two diagnoses for DP. H1 and H2 are discriminable if

First, we define a system structure description (SSD) by and only if] m3 m I (OBS - OBS') such that
slightly modifying the definition in [5]: DT U CXT U H1 F- m(a)

Definition 2.1 A Structured System Description (SSD) is a DT U CXT U H2 F m(b)

tuple (M G, DT) where: m(a) 0 m(b)

- V is a set of variables whose domains DOM(v), v E V are Diagnoses are complete instantiations of variables in sort
discrete and finite. Moreover, variables in V are partitioned in COMPS. We now turn into considering two such assignments
the following sorts: CXT (inputs), COMPS (components), Al and A2 and compute the projections 3 of their transitive
STATES (endogenous variables), OBS (observables) 1 closures 4 over OBS (OBS1 = projectoBs(tclosure(Al))

- DT (Domain Theory) is a set of Horn clauses defined over and OBS2 = projectoBs(tclosure(A2)) respectively), given
V representing the behavior of the system (both normal and a fixed context CXT.
faulty). Note that the clauses are constructed in such a way If OBS1 = OBS2 then Al and A2 are indiscriminable di-
that the roles associated with variables belonging to different agnoses for diagnostic problem (SDD, OBS, CXT} where
sorts are respected: CXT and COMPS variables will always OBS = OBS1 (and = OBS2). An interesting relation be-
appear in the body of clauses; OBS variables will always ap- tween Al and A2 holds when this situation happens under
pear as heads of clauses; STATES variables can appear in any fixed context CXT:
both

- G (System Structure) is a DAG whose nodes are in V repre- Definition 2.6 Let Al and A2 be two complete in-
senting the structure of the system. The graph can be directly stantiations of COMPS; if, given any context CXT,
computed from DT, being just a useful way for making explicit projectoBs (tclosure(A1)) = projectoBs (tclosure(A2)), then
the structural properties "hidden" in DT clauses: whenever a we say that Al and A2 are indiscriminable.
formula N, (bmi) A ... A N1(bmk,) t M(bmj) appears in DT,
nodes Ni through N1 are parents of M in the graph In the above definition we have considered the case where

Since the system structure graph 9 is a DAG, a partial prece- all OBS are available. Let's now consider the case (as it is
dence relation holds between connected nodes in the graph: usual in on-board diagnosis) when we can identify subsets of

OBS that may be the only available manifestations (e.g. only
Definition 2.2 We denote with >- the usual precedence par- sensorized manifestations may be available on-board, with no
tial order relation over nodes in DAG G, i.e.: N >- M if there possibility to perform further measurements).
exists a directed path from N to M. Let {CLk } denote such identified interesting subsets (not nec-

Given an SSD we can define specific diagnostic problems over essa-ily all disjoint); we can now refine definition 2.6 as fol-
it: lows:

Definition 2.3 A diagnostic problem is a tuple DP = Definition 2.7 Two assignments Al and A2 are CLk-
(SDD, OBS', CXT} where SSD is the System Structured indiscriminable iff they are indiscriminable by considering
Description, OBS' is an instantiation of OBS' C OBS and OBS restricted to CLk,, i.e. VCXT projectcL, (tclosure(A1))
CXT is a complete instantiation of CXT = projectL•k (tclosure(A2))

We are now ready to give our definition of diagnosis, which isa fuly bducivechaacteizaion2 (se []):Given the above definitions, we are now ready to characterize
a fully abductive characterization 2 (see [4]): formally two behavioral modes (i.e. values from the domain of

Definition 2.4 Given a diagnostic problem DP = a component variable ci) that may be safely collapsed together
(SDD, OBS', CXT} an assignment without loosing any discriminability power of the model:
H = {ci(bmi),... ,c,(bm,)} of a behavioral mode to each
component ci€ COMPS is a diagnosis for DP if and only Definition 2.8 Let bmra and bma be two behavioral modes
if: of component variable ci; if for any two assignments Al =

Vm(x) E OBS' DT U CXT U H F- m(x) (al A ci(brn,) A a2) and A2 = (al A ci(bmn,) A a2) such that

and they differ only in the mode associated to ci, Al and A2 are
(CLk -)indiscriminable, then we say that bmra and bma, are

Vm(x) EOBS' DT U CXT U H V m(y) for y x x (CLk -)indistinguishable.

We assume that observables never influence other variables. This
is not restrictive: each observable parameter which influences 3 A projection of a set of instantiated variables I over a set of
other variables is modeled as an endogenous variable (i.e. it be- variables W (projectw(I)) is just the subset of I that mentions
longs to STATES) with an associated observable in OBS variables in W

2 Note however that our approach does not depend on the definition 4 The transitive closure of Ai (tclosure(Ai)) is the set of me(x) s.t.
of diagnosis being abductive vs consistency-based DT U CXT U Ai Hr m(x)



3 Automatic Domain Abstraction remove them from the model.
Let's now describe into some more detail the functions

3.1 The Algorithm called by Abstract() (figure 2).

In this section we present an algorithm which identifies indis- Function FindInfluences(0 considers how each mode bmra

tinguishable modes in a given model (that we will refer to as of variable N under consideration can cause mode bm.a of

the detailed model), and generates a simplified model (that immediate successor variable Ml. The condition under which

we will call abstract) where mutually indistinguishable modes N(bm,) causes M(bm.) is clearly the disjunction of conjunc-

are merged in new modes. The algorithm assumes that the tions of the form a = ai A a 2 where a, and a 2 occur in a

model is defined as in definition 2.1 and further assumes that formula ai A N(bmrn) A a2 : M(bm.n).

in the system structure graph G at most one directed path Function FindIndistinguishableModes(0 is recursive; at

exists between any two nodes. each call it partitions a set of modes into indistinguishabil-

The top level function Abstract 0 is sketched as pseudo- ity classes based on a single immediate successor node and

code in figure 1 while other relevant functions called by then calls itself recursively on each of the generated equiva-

Abstract 0 are showed in figure 2. lence classes in order to further discriminate by considering

Parameter CLk C Obs of Abstract 0 contains the list the remaining immediate successors.

of available manifestations, while HCLk associates to each Note that in the test ((a, 7ri E IIE od) we are testing proposi-

Al E CLk, its granularity in the form of a partition HM over tional formulas for identity; we assume that any two equiva-

DOAI(AI). lent formulas have been made identical at that point by calls

Manifestations that aren't available at all do not belong to to normalize0 in FindInfluences (). Normalization is not too

CLk. If AM is available at a certain level of granularity, HuI computationally expensive since the formulas we handle are

will contain as many classes as the distinguishable values for in DNF and only positive literals can occur.

Ml, and each class will contain all the v E DO-I(-I) that Function MergeModeso, given a partition H

can't be distinguished at the available level of granularity. As (either an element of IHCLk or computed by

a special case, if Ml is available at its maximum granularity, FindlndistinguishableModes(0), considers the equiva-

HU will contain a separate class for each v c DOI(A•I). lence classes 7r one at a time. It generates a new name v as

The first few instructions of Abstract(0 perform an initial a "representative" for the class and then scans the DT set of

abstraction of the model based on HCLk: indistinguishable formulas for occurrences of bm E 7r and replaces them with

values for each manifestation Ml (i.e. those that belong to the /. This process can produce duplicate formulas 5; by using

same class in Hu ) are substituted in DT by a new "abstract" set notation in the pseudo-code we underline that only one

value representing the whole class, copy of the duplicate formulas has to be added to the new

The call to TopologicalSort(0 returns a list contain- version of DT.

ing variables in Comps U States such that if two variables
N, AM satisfy relation 2.2 (i.e. N >- AM) we guarantee that 3.2 Correctness
position(N) > position(MI). In particular, we start a visit
of the system structure graph G at the available observation In this paragraph we state two properties which imply that
nodes and proceed backwards by visiting a node only if all its the abstraction algorithm behaves as intended.
immediate successors have already been visited.
Note that, by starting the visit at the available manifesta- Property 3.1 If two behavioral modes are put in the same

tions only (i.e. CLk,), some of the Comps and States may not class ir by function FindIndistinguishableModes () they are

be reached at all; these nodes, that are connected only to CLk -indistinguishable in the sense of definition 2.8.

unavailable manifestations, are stored in a TrivialNodes list(see below). Proof. Given assignments Al = a1 U {NV(bmri)} U a•2 and
(seebelw).A2 = a, U f{N(bm,.2)} U a•2 suppose DT U CXT U Al ý- m(ax)

The main loop in Abstract 0, for each variable N in A2 Da U { m) U a 2  suppose T U CXT U Clearmy,
the list, first computes the conditions under which the
variable influences its immediate successors modes (this is it can't be m(x) E telosure(al U a2) because otherwise m(x)

recorded in an associative memory InfluencesMatrix []); would be derivable from A2 as well.

then, by using InfluencesMatrix[] it computes the par- Then, the entailment of m(x) by Al must exploit at some

tition of all the modes of the variable in equivalence point N(bm,i) by using a formula (p = (N(bm,i) A 7 : L).

classes determined by the indistinguishability relation If L = ma(x), i.e. the formula directly entails ma(x), then, an

(FindlndistinguishableModesO); finally it replaces the oc- analogous formula (' = (N(bmrt2) A 7' m(x:)) must exist

curences of the modes in the DT clauses with newly introduced in DT, with 7 # ' (indeed, two modes are put in the same
"class representative" modes (MergeModes(0). partition only if they have the same direct effects under the

If the call to FindlndistinguishableModes() produced a same conditions). Then, DT U CXT U A2 F- m(x), which is a

trivial partition for N (i.e. only one class coinciding with contradiction.

DOAI(N)) then N itself is added to the list of trivial nodes. This result can be extended to the case when L 0 m(x) (i.e.

When Abstract 0 terminates, TrivialNodes contains the the number of steps between the application of formula p

components and states whose behavioral modes are all equiv- and the conclusion m(x) is greater than 1) with a proof by

alent in influencing relevant manifestations (i.e. Ml E CLk). induction. El

These nodes, together with unavailable manifestations (i.e.
AM E Obs\CLk) are obviously redundant for the diagnostic 5 This is not incidental: the value of our abstraction partially lies
task and the caller of Abstract () may decide to completely in the collapse of formulas



Function Abstract(V = ( Cxt, Comps, States, Obs ý, G, DT, CLk, HOLD)
ForEach Ml E CLk

DT :=MergeModes(M, HCLk(M), DT)

Loop
Candidates :=TopologicalSort (States U Comps, CLk, G)
TrivialNodes :=States U Comps \ Candidates
InfluenceMatrix :=0 x 0 x 0
ForEach (N E Candidates)

ImmediateSuccessors :={children of N in the system structure graph G} nl (Canditates U CLk)
InfluenceMatrix :=InfluenceMatrix U Findlnfluences(N, ImmediateSuccessors)
H :=FindlndistinguishableModes(N, modes(N), ImmediateSuccessors, InfluenceMatrix)
If (H = {DOM(N)}) Then TrivialNodes :=TrivialNodes U {N}I
DT :=MergeModes(NV, H, DT)

Loop
Return

EndFunction

Figure 1. Sketch of the Abstract 0 function

The following property is intended to demonstrate the it- appears, the following holds:
correspondence of a diagnosis at the abstract level to a set of tcoBs' (D-) = U......$. tcoBs, ({c1(bmllJ),... . n(-j
diagnoses at the detailed level. But, in step 1, we have proved that all the terms of the union

are equal. So, tcoBs, (Da) is equal to the tcoBs' of any of the
Property 3.2 Let DPd = (SSDd, OBS', CXTý be a di- Dd.
agnostic problem and DPa = (SSDa, OBS',CXTý the We use this result for step 3: Da is a diagnosis with the
corresponding problem at the abstract level. Then, Da = abstracted model iff DT U CXT U Da, F- OBS'; but, then,
{cij~vi),. .. ,c,(vn)} where vi is a new behavioral mode in- for any Dd the same entailment must hold, thus any Dd is a
troduced in place of set {bmajj<... , bmaik I of indistinguishable diagnosis at the detailed level. The converse is analogous. EW
behjavioral modes is a diagn~osis for DPa iff all the elements
in the set:

{{cij(bmijjj),. .. c~~-j. ,j = 1 ... kil 3.3 An Example
are diagnoses for DPd.

We end this section by illustrating how the abstraction algo-
Proof. Our proof is subdivided in 3 steps: first, we prove rithm works on a very simple SSD. Let the original Domain
that for any two diagnoses at, the detailed level Dd, and Dd 2 , Theory DT contain the following clauses (figure 3 shows the
projectoBS'(tclosure(Dd1 )) = ProjeCtOBS' (tclosure(Dd2 )) I associated SytmStructureGrp)
where OBS' C OBS represents the available manifestationsSytmGah
(parameter Obs of function Abstract()). Then, we prove that sl(a) A s2(a) =:ý ml(x) sl(a) A s2(a) =:ý m2(x)
for any detailed diagnosis Dd, projectoBs, (tclosure(Dd)) = sl(a) A s2(b) =t mnl(x) sl(a) A s2(b) =t mn2(x)
proj ec~tOBs,(tclosure(Da)). Finally, we exploit this result to sl(a) A s2(c) Ta 1l(x) sl(a) A s2(c) m2(z)
prove the theorem thesis. sl(b) A s2(a) T ml(y) sl(b) A s2(a) m2(y)
In the following, projectoBs' (telosure(.)) has been abbrevi- sl(b) A s2(b) T ml(y) sl(b) A s2(b) m2(y)
ated in tcoBs,(0)- sl(b) A s2(c) T ml(y) sl(b) A s2(c) m2(z)

For step 1, we proceed by induction on the number of
components which are assigned different behavioral modes il(a) A cl(a) A c2(a) =:ý sl(a) il1(b) A cl.(a) A c2 (a) sl(b)
in assignments Dd, and Dd2 . The case n = 1 (i.e. Ddl = il1(a) A cl.(a) A c2 (b) =t sl(a) il1(b) A cl.(a) A c2 (b) sl(b)
a U f{ci(bm,)}I and Dd 2 = a U f{ci(bma,) 1) follows from th e def- il1(a) A cl.(a) A c2 (c) sl(b) il1(b) A cl.(a) A c2 (c) sl(a)
inition of indistinguishability of bmr, and bmal. il(a) A cl(b) A c2(a) sl(a) il1(b) A cl.(b) A c2 (a) sl(b)
For the inductive step, where Ddl = al U {cij(bmr)}, Dd2  i 1l(a) A cl.(b) A c2 (b) sl(a) il1(b) A cl.(b) A c2 (b) sl(b)
a2 U {ci (bm,) I and al, a2 differ in assignments to n compo- il1(a) A cl.(b) A c2 (c) sl(b) il1(b) A cl.(b) A c2 (c) sl(a)

nents, we note the following relations hold:
teCOBS' (al U ci(bmr,)) = tcoBs, (al U Ci(bm,)) i2(a) A 63(a) s2(c)
from indistinguishability of bmr, and bmn,, and: i2(a) A 63(b) s2(a)

tecOBS' (al U ci(bma,)) = tcoBs, (a2 U ci(bm,)) i2(a) A 63(c) =t s2(b)
from inductive hypothesis. It then follows that tcoBs, (al U i2(b) A 63(a) =ý s2(c)
ci (bmr,)) = tcoBs, (a2 U ci (bm,)). i2(b) A 63(b) =t s2(a)

In order to carry step 2, we note that, since vi is substituted i2(b) A 63(c) =:ý s2(b)
by MergeMode s 0 wherever a mode b~ij of its associated class



Function Findlnfluences(NV, ImmediateSuccessors)
Node InfluenceMatrix :=0 x 0 x 0
ForEach (bmr, E modes(N), Ml E ImmediateSuccessors, bma, E modes(M))

Formulas {= clauses where N(bmr,) occurs in the body and AI(bmn,) occurs in the head}
a :=false
ForEach ((a, A N(bmr,) A a 2 =:ý AI(bm)) E Formulas)

a :=a V (a, A a 2 )
Loop
Node InfluenceMatrix := Node Inf luen ceMatr ix U {(NV(bmn,),M(bm,), normualize(a))I

Loop
Return NodelnfluenceMatrix

EndFunction

Function FindlndistinguishableModes (N, Modes,* Nodes,* InfluenceMatrix)
M : first(Nodes)

ForEach (bmr E Modes)
a :=Ub- ( InfluenceMatrix(N(bmr), AI(bm,)), AI(bmn,)
If ((a, irý E H-nd) Then

Else

Endlf
Loop

Hl: U(-,ýýEnOO.d{7r
If (tail(Nodes) 0 0)

ForEach (7r E Hl)
Hl: H-ir U FindlndistinguishableModes(NV, 7r, tail(Nodes), InfluenceMatrix)

Loop
Endlf
Return Hl

EndFunction

Function MergeModes(N, Hl, DT)
DT' : 0
ForEach (7r E Hl)

v :=GenerateNewModeName(ir)
Formulas :={clauses for which ]bmr E 7r s~t. N(bmr,) appears in the body or headl
ForEach (((p = a, A N(bmr,) A a2 =ý AI(bm,)) E Formulas)

DT' : DT' U {(alA N(v) Aa 2 =t> (bm,))l
Loop
ForEach (((p = a =t N(bmr)) E Formulas)

DT' DT' U {aN(v))}
Loop

Loop
Return DT'

EndFunction

Figure 2. Sketch of the main functions called by Abstract(0



with OBS = {ml,m2}, STATES = {sl,s2}, COMPS M1M
{cl,c2,c3} and CXT= {il,i2}.
Let the domains of the variables be as follows:

DOM(•al) = {x, y}, DOM(m2) = {x, y, z}
DOM(sl) f a,b},DOM(s2) = {a,b,c} 1S
DOM(cl) = {a, b}, DOM(c2) = DOM(c3) = {a, b, e}
DOM(il) = {a, b}, DOM(i2) = {a, b}

Furthermore, let's assume for simplicity that all the OBS are
available at their maximum granularity.
The algorithm starts by trying to merge modes of sl.

The InfluenceMatrix() entries relating sl to ml are: Ii C1 C2 12 C3

(,l(a), {(ml(x), s2(a) V s2(b) V s2(c)), (Tal(y), I±}>
(sl(b), {(ml(x), ±), (ml(y), s2(a) V s2(b) V s2(c)ý}> Figure 3. System Structure Graph for the Example Domain

it follows that modes a, b of sl can't be merged. It is now s2 Theory
turn to be considered; the entries relating s2 to ml are:

<(s2(a), {<mi(x), sli(a)), <mil(y),sl•(b))})

(•2(b), {(ml(x), sl(a)>, (ml(y),sl(b)>}> il(b) A cl(ab) A c2(c) : sl(a)
<(,2(c), {<mi(x), sli(a)), <mi(•y), sli(b))})

it may seem that modes a, b, c of s2 can be merged; however, i2(a) A c3(a) • s2(c)
s2 also influences another manifestation, m2: i2(a) A c3(bc) • s2(ab)

(s2(a), {(m2(x), sl(a)), (m2(y), sl(b)), (m2(z), ±)}) i2(b) A c3(a) • s2(c)
(,2(b), {(m2(x), sl(a)), (m2(y), sl(b)), (m2(z), ±)}) i2(b) A c3(bc) s s2(ab)
(,2(c), {(m2(x), ±), (m2(y), ±), (m2(z), sl(a) V sl(b))}>

we can thus merge modes a, b in new mode ab, but not mode
C. and abstracted domains:

Having considered all the states, we now turn to the compo- DOMa(ml) = {x, y}, DOMA(m2) = {x, y, z}

nents, starting from cl: DOM(sl) = {a, b}, DOM(s2) = {ab, c}
DOM(cl) = {ab}, DOM(c2) = {ab, c}, DOM(c3) = {a, bc}

(cl(a), f{(,l(a), (il(a)Ac2(a))V(il(a)Ac2(b))V(il(b)Ac2(c))ý, DOM(il) = f{a, b}, DOM(i2) f {a, b}< (s)l{,(b), : :)c())~lbA2()Vi~)A2b)l

(sl(b), (il(a)Ac2(c))V(il(b)Ac2(a))V(il(b)Ac2(b))ý}) 4 Using Abstract Models in On-Board

modes a, b of cl can then be merged in new mode ab; note that Diagnosis
cl goes into the trivial-nodes list, since all its domain has col- Having described how the abstraction algorithm works, we
lapsed into a singleton. Similar arguments lead to merging now consider how it can be used in real scenarios to practically
modes a, b of c2; however, mode c of c2 can't be merged with improve the performance of the diagnostic problem solver.
the other two modes. A first scenario is when the manifestations of the system
Component c3 is the only one left to be considered: can be naturally subdivided in classes CLk (see section 2);

(c6(a), {(s2(ab), ±), (s2(c), i2(a) V i2(b))}) one such classes will contain all the manifestations (CL.u),
(c6(b), {(s2(ab), i2(a) V i2(b)ý, (s2(c), ±I}) another may contain only sensorized manifestations (CL,,,,),
(c3(c), {(s2(ab), i2(a) V i2(b)ý, (s2(c), ±I}) further ones may exclude from CL,,,, other groups of mani-

we can merge modes b, c into a new node be. Note that we can festations that can potentially all become unavailable together
merge these modes only because we already unified modes a in some contexts. Similarly, manifestation granularities (ex-
and b of s2; the importance of processing variables in the >- pressed as abstraction functions Ti) may be identified and
relation order is now evident, associated to classes they apply to.
Note also that we could have considered for abstraction s2 Equipped with this set of pairs (CLk, - we can generate
before sl, or c2 before cl or after c3 since sl, s2 and cl, c2, c3 off-line a corresponding set of models 11,; when a specific di-
are not tied by the precedence order relation. It is easy to see agnostic problem is presented to the on-line diagnostic agent,
that in such case the same mergings would have taken place the minimal (CLk,, -rj that covers the available observations is
anyway. selected, and the corresponding model M1, is used to compute

The output of the process described above results in a re- diagnoses.
vised domain theory: Sometimes, however, classes of manifestations (and their

sl(a) A s2(ab) : ml(x) sl(a) A s2(ab) : m2(x) granularity) cannot be conveniently identified a-priori. In such

sl(a) A s2(c) : ml(x) sl(a) A s2(c) = m2(z) cases we may want to compute an abstract model on-demand,
sl(b) A s2(ab) : ml(y) sl(b) A s2(ab) : m2(y) given the particular CLk and ri that have been identified as

sl(b) A s2(c) : ml(y) sl(b) A s2(c) = m2(z) currently available 6

The system may perform this on-line model synthesis as a

il(a) A cl(ab) A c2(ab) s l(a) lower priority task, asynchronously with the diagnostic tasks;

il(a) A cl(ab) A c2(c) s l(b) 6 How this info can be gathered, either manually or automatically,
il(b) A cl(ab) A c2(ab) s l(b) is out of the scope of the present paper



once the ad hoc k41i has been computed it may be reused for model clauses modes avg
many diagnostic problems until some conditions on the avail- detailed 1143 3.43
able observations or their granularity changes. abstract 930 2.85

Obviously, time overhead is added by the computation of
models but in some situations this may well be paid off by the Table 1. Comparison between abstract and detailed models
benefits (see below). Moreover, experimental data presented
below in section 5 show that such overhead may be in the or-
der of the time needed for solving a few easy diagnostic cases
(involving a single fault) or just a difficult one (involving mul- We have then compared the performance of the diagnostictipe fult); eepngin mind that the abstraction algorithm agent when it uses the detailed (original) versus the gener-
tiple faults); keeping in min ost probstct n aloit ated abstract model. Using the simulator for the diagnostic
is only run once whilst many diagnostic problems can exploit agent, three test sets of 100 diagnostic problems each have
such a abstract model, this overhead may be acceptable. been automatically generated; problems in test sets 1, 2 and

In bosth the above scenarios, the number of returned 3 had 1, 2 and 3 faults injected respectively. Table 2 reports
diagnoses is reduced by returning diagnoses for the abstract on the reduction of the average number of diagnoses returned.
model that corryespondiay the setso iagses i foration, dasioed Particularly significant appear the reductions obtained in testmodel that carry essentially the same information, as proved set 2 (-43%) and test set 3 (-61.6%).

It should be noted that the diagnostic agent returns only pre-Moreover, whenever a diagnosis for the abstract model ferred diagnoses (in particular, those that have a minimal
mentions a "compound mode" (i.e. a new mode introduced in number of faults), thus the reported reductions are obtained
place of a non-singleton set of indistinguishable modes), we by compacting "good-quality" diagnoses, not by discarding
explicitly know that the set of modes it represents couldn't impausing ono og
be discriminated even in different contexts. Thus, in case implausible ones.
further tests involving different contexts are planned, they model testset 1 testset 2 testset 3
shouldn't aim at that kind of discrimination. detailed 5.0 ± 0.6 17.9 ± 3.6 123.3 ± 23.1
Both reduced-size and increased informativity of the result abstract 3.7 ± 0.4 10.2 ± 1.9 47.3 ± 8.4
should be helpful for the human or automatic supervisor
which must interpret it and take action accordingly. Table 2. Average number of elementary diagnoses obtained

with abstract and detailed models (confidence 95%)

5 Experimental Results Even if our diagnostic agent uses a compact encoding for

We have implemented the algorithm described above as a candidate diagnoses during the search process, thus obtaining
module of the diagnostic agent for the space robotic arm SPI- an optimized search space size that is not proportional to the
DER developed by ASI (Agenzia Spaziale Italiana); for a de- number of diagnoses ([11]), the average time employed for
scription of the diagnostic agent please see [12] and [11]. solving problems using the abstract model appears to be at
The model of the robotic arm (which obeys definition 2.1) is least no worse than that obtained by using the detailed model
enough complex to represent an interesting test-bed: it con- (see table 3).
sists of 35 assumables (COMPS) with an average 3.43 behav-
ioral modes each, 45 manifestations (OBS) and 1143 formulas model testset 1 testset 2 testset 3
7. detailed 241 ± 19 337 ± 45 1212 ± 182

Observations in such a model are explicitly partitioned 235 ± 25 259 ± 32 988 ± 153
into two classes: sensorized (CL .... ) and non-sensorized
(CLo.). While observations in CL,,,, can reasonably be Table 3. Average CPU times obtained with abstract and
assumed to always be available, observations in CL,,,,,, are detailed models (in msec; confidence 95%)

available through manual measurements that can be carried
only during off-line diagnosis. Consistent results (both in terms of static reduction of the

We have applied the abstraction algorithm to the model model size and reduction of diagnoses) have been obtained
by passing C as the available observations (assumin.g by applying the abstraction algorithm to other subclasses of
TOBS = identity, i.e. manifestations available at their maxi- manifestations in the model. Space precludes reporting them
mum granularity) and obtained a simplified model as output. in this paper.
Table 1 shows some relevant static measures on the detailed inths paper.Please note that the faulty behavioral modes modeled for
and abstract models: the number of clauses has been reduced the components were the ones listed in the FMECA document
by 18.6%, and the average number of behavioral modes per for the real device, thus proving that the results obtained with
system component has been reduced by 16.9%. Compilation the abstraction algorithm and reported above are of interest
of the detailed model in the abstract one took 1494msec of for a real-world system.
CPU time (all results in this section are referred to a Java
implementation of both the diagnostic agent and the abstrac-
tion algorithm, compiled and run using jdkl.3 on a Sun Sparc 6 Related Work and Conclusions
Ultra 5 equipped with SunOS 5.8). Literature on MBD contains several proposals to use abstrac-

7 The number of formulas is greatly reduced by the use of a noisy- tion as a means of simplifying system model and, conse-
max modeling technique, see [12] quently, characterization and computation of diagnoses.
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There are many directions we are considering for extending
our work. The current version of the algorithm assumes that
in the device structure nodes are connected by at most one
directed path, while representation of some systems of prac-
tical interest does not obey to this restriction.
We also could explore how our automatic abstraction tech-
niques can be extended in order to merge together compo-
nents whose contributions to the available observations are
indiscriminable (i.e. introducing the notion of indistinguish-
able components).


