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Abstract In general, systems are dynamic, i.e., their behavior
changes over time. Faults impose additional transients on

Applying model-based diagnosis techniques to sys- the dynamic behavior, but that may be difficult to detect and
tems that exhibit hybrid behavior presents an inter- characterize, especially in the presence of model disturbances
esting set of challenges that mostly revolve around and noisy measurements. Moreover, in physical systems nat-
interactions of the continuous and discrete compo- ural feedback from the system and controller actions may
nents of the system. In many real world systems, mask the transient behavior if they are not detected soon after
the overall physical plant is inherently continuous, they occur. This motivates the development and use of online
but system control is performed by a supervisory model-based fault detection and isolation methods. Model-
controllbyeronfigurig ta i sesd tem schipongehav- obased techniques employ a model to predict nominal system
iors by reconfiguring the system components, or behavior. The model must be constructed at a level of detail
switching controllers. In this paper, we present a where system behavior can be mapped to system components
case study of an aircraft fuel system, and discuss and parameters. The relations in the model are employed to
methodologies for building system models for on- map observed deviations between measurements and values
line tracking of system behavior and performing predicted by the model to possible faults in system compo-
fesaul isrfola edondettion and identificat. E i rical snents. Continued monitoring helps establish a unique fault or
ies are performed on detection and isolation for aseofautasciedwhtesyem

set f pmp ad ppe filues.set of faults associated with the system.
set of pump and pipe failures.

Most real-life systems are equipped with a limited num-
ber of sensors to track system behavior, and analytic redun-

1 Introduction dancy methods have to be applied to derive non-local in-

Most present-day systems that we use are designed to be re- teraction between potential faults and observations. These

pairable. Failures. either physical (hardware) or logical (soft- techniques have been applied to a variety of schemes used
ware), and the resulting maintenance are a fundamental part in the diagnosis of discrete [deKleer and Williams, 19871,
of the economics of ownership. Fault diagnosis involves the discrete event [Lunze, 1999; Sampath et al., 19961 and

detection of anomalous system behavior and the isolation and continuous systems [Gertler, 1997; Mosterman and Biswas,
identification of the cause for the deviant behavior. When the 1999]. The traditional approach to hybrid system diagno-
system includes safety-critical components, failures or faults sis has been to use a single continuous model with complex
in the system must be diagnosed as quickly as possible, and non-linearities, or abstracting the continuous dynamics to a
their effects compensated for so that control and safety can discrete event model. Complex non-linearities complicate
be maintained. The term, diagnostic capabilities, refers to the analysis and they may introduce numerical convergence
the abilities of a system to detect a failure and isolate it to problems. Discrete event abstractions lead to loss of criti-

a failed unit. Quick detection and isolation allows for quick cal information, such as fault transient characteristics. Fur-
corrective actions that may include reconfiguration of system ther, methods to identify the set of events that describe both
functions to prevent damage and maintain control, nominal and faulty behavior is often a computationally chal-

Fault accommodation requires tight integration of online lenging task bringing to question the scalability of such ap-
fault detection, isolation, and identification with the system proaches. Hybrid system analyses require the use of multi-
control loop that may be designed to take appropriate control ple models of the system. Recent approaches to hybrid sys-
actions to mitigate the effect of the faults and help maintain tem diagnosis have incorporated appropriate model selection
nominal system operation. Failure to detect faults reduces and mode estimation techniques at run time to track faulty
system availability, results in failed or incomplete missions, behavior and perform fault isolation [McIlraith et al., 2000;
and, in some cases, may even lead to catastrophic failures that Hofbaur and Williams, 2002; Narasimhan and Biswas, 200 1;
lead to loss and destruction of the system. Therefore, fault 20021.
diagnosis is critical to achieving system performance and life- Model-based diagnosis techniques can only be as good as
cycle cost objectives, the models upon which they are based. Incomplete and incor-



rect models cause problems with the tracking and fault isola-
tion tasks. The tracking process may produce false alarms or R Win Taik

worse missed alarms. In the first case, diagnosis is triggered
when there is no fault in the system. In the second situation, I
diagnosis is not triggered and a fault may be missed. Fault
isolation with incomplete and inaccurate models may also Rght•F•ed

produce false candidates and miss true candidates. On the TR Emo
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High-performance aircraft require sophisticated control tech-
niques to support all aspects of operation, such as flight con- Figure 1: Fuel System Schematic
trol, mission management, and environmental control. An
aircraft's fuel transfer system maintains the required flow
of fuel to the engines through different modes of operation,
while ensuring that imbalances are not created that affect cen- quantity decreases by 100 lbs, the level control valve in that
ter of gravity of the system. Fig. 1. illustrates a typical fuel tank will be opened. The fuel then flows from the transfer
system configuration. The fuel system geometry is symmet- manifold into the feed tank raising its level back to the full
ric and may be split into left side and right side arrangements. fuel quantity at which point the level control valve will be
The overall system can be divided into two main sub-systems: closed, stopping the fuel transfer.
(i) the engine feed system, and (ii) the transfer system. The
feed system consists of a left and right engine feed tank. The
tanks are connected through pipes with controlled valves so
that fuel can be transferred between the tanks if a fault occurs Table 1: Fuel Transfer Sequence
in one of the tanks. A boost pump in each of the feed tanks Left Wing Right Left Fuse- Right Fuse-
controls the supply of fuel from the tank to its respective en- Tank Wing Tank lage Tank lage Tank
gine. The transfer system moves fuel from the two forward 2500 2500 3300 3000
fuselage and the two wing tanks to the engine feed tanks. The 2500 2000 3300 3000
intent is to keep the engine feed tanks near full at all times so 2000 2000 3000 3000
that sufficient fuel is available on demand, and if failures oc- 2000 2000 3000 3000
cur in the transfer system there is still a significant amount 1000 1000 2000 2000
of fuel available for emergency maneuvers. The fuel trans- 0 0 1000 1000
fer sequence is set up in a way that maintains the aircraft's 0 0 0 0
center of gravity. To achieve this, pumps located in the fuse-
lage and wing tanks are are turned on in a pre-determined
sequence to transfer their fuel to a common transfer manifold
(set of tubes). The fuel exits the transfer manifold through The most common failures in this configuration are trans-
level control valves into the feed tanks. fer and boost pump failures, and shutoff valve failures. The

A wide variety of sensors may be included in the fuel transfer pumps have two primary failure modes. One is a to-
transfer system. Fuel quantity gauging sensors determine the tal loss of pressure caused by the impeller not turning. The
amount of fuel in a tank. Engine fuel flow meters determine other is a degraded state caused by mechanical wear, leakage,
engine fuel consumption. Pressure transducers measure the or electrical failure where the fuel flow rate falls below nom-
transfer and boost pump pressures. Position sensors deter- inal values. The second failure can lead to the first condition
mine the open and closed states of valves. Each sensor comes over time. Faults in the boost pump mirror those in the trans-
at a cost that is determined by its weight, reliability, complex- fer pumps. Valve failures are stuck-at conditions, i.e., their
ity, and cost. Therefore, designers often try to minimize the positions do not change even when they are commanded to
number of sensors while ensuring that the required control do so. This can result from mechanical friction/jamming of
can be achieved. the shaft or electrical failure of the motor or power source. In

The transfer system control schedules the pump operation this work, we also consider partial failures of the valves. A
to match a pre-defined transfer sequence shown in Table 1. third class of faults that we consider is leaks in the connecting
The unit of the amounts in the table is the pound. Initially pipes. Our goal is to develop an online diagnostic system for
one wing pump in each tank is turned on. When a feed tank detection, isolation and identification of these faults.



3 Component-based Hierarchical Modeling ..............................
for Diagnosis Wing Tank R

Complex real-world systems are made up of a number i ['
of subsystems and components. Hierarchical component- Se-O-TF-O'
based approaches, e.g., Statecharts [Harel, 19871, 20sim [van Pump Effciency F1 Feed Tank

Amerongen, 20001, and Ptolemy [Buck et al., 19941. are a R C
practical approach to constructing models of such systems, Switching Signc [ [

We have developed a new methodology for hierarchical com- - - --------------------- 1- 0
ponent based modeling that customizes the graphical Generic Pipe

Transfer Tank R
Modeling Environment (GME) with a hybrid bond graph C -0
(HBG) approach for building hybrid models of physical sys- i
tems with supervisory controllers. This section reviews our Se-0--TF-O'
approach to hybrid bond graph modeling, then presents the pump Efficiency ,

GME methodology for building component-based models for II
the aircraft fuel transfer system. Switching Signal

3.1 Hybrid Bond Graphs Figure 2: Hybrid Bond Graph Example

Our approach to modeling the fuel system is based on an ex-
tended form of bond graphs [Karnopp et al., 19901, called
Hybrid Bond Graphs (HBG) [Mosterman and Biswas, 1998]. junctions. The transitions in this automaton depend on both
Bond graphs present a methodology for energy-based mod- control signals and internal variable values.
eling of physical systems. Generic bond graph components Fig. 2 shows the hybrid bond graph model of a portion of
represent primitive processes, such as the energy storage ele- the fuel system. The dotted subsystem represents the wing
ments, inertias and capacitors, and dissipative elements, re- tank, and the dashed subsystem represents the fuselage tank.
sistors. Bonds represent the energy transfer pathways in the In this simplified model, the tank system is modeled as a ca-
system. Junctions, which are of two types: 1 or series, and pacitor for storage of fuel, pump system as an effort source
0 or parallel, define the component interconnectivity struc- to boost the pressure and create an outflow, and pipes as con-
ture, and impose energy conservation laws. Overall, the bond duits with resistive losses. For this configuration with two
graph topology implies system behavior that combines indi- switched junctions, the system can be in four different modes.
vidual component behaviors based on the principles of conti- When the two junctions are off, there is no fuel supplied to the
nuity and conservation of energy. feed tank, one of the two tanks (wing or fuselage) can supply

Extensions to hybrid systems require the introduction of fuel to the feed tank, and both tanks may supply fuel to the
discrete changes in the model configuration. In the tBG feed tank at the same time. Switching of configurations is
framework, discontinuities in behavior are dealt with at achieved by changing the switching signal values. Suppose
a meta level, where the energy model embodied in the the wing tank is supplying fuel, i.e., signalI - 1 (on) and
bond graph scheme is suspended in time, and discontinuous signal2 - 0 (off). To switch supplying tanks, we simply set
model configuration changes are modeled to occur instanta- signal, - 0 (off) and signal2 - 1 (on). The state equation
neously. Therefore, the meta level describes a control struc- model for the new configuration can be easily derived online
ture that causes changes in bond graph topology using ide- using a standard algorithm [Karnopp et al., 19901.
alized switches that do not violate the principles of energy
distribution in the system. Topology changes result in a new 3.2 GME
model configuration that defines future behavior evolution. We have developed an approach for building component-
To ensure physical principles are not violated, we have de- based system models using a graphical modeling tool called
veloped transformations that derive the initial system state in Generic Modeling Environment(GME) [Ledeczi et al., 20011.
the new configuration from the old one. From this point on GME is a configurable toolkit for creating domain-specific
behavior evolution is continuous, till another discrete change modeling and program synthesis environments. The con-
is triggered at the meta level. figuration is accomplished through meta-models I specifying

To keep the overall behavior generation consistent, the the modeling paradigm (modeling language) of the applica-
meta-model control mechanism and the energy-related bond tion domain. The modeling paradigm contains the syntac-
graph models are kept distinct. The switching structure is im- tic, semantic, and visual presentation information of the do-
plemented as localized switchedjunctions that provide a com- main, such as the concepts that form the building blocks for
pact representation of the system model across all its nomi- constructing models, the relationships among these concepts,
nal modes of operation. Instead of pre-enumerating the bond how the concepts may be organized and viewed by the mod-
graph for each mode, the HBG uses individual junctions to eler, and the rules governing the composition of individual
model local mode transitions. The switched 0- and 1- junc- concepts and sets of concepts to form component and system
tions represent idealized discrete switching elements that can
turn the corresponding energy connection on and off. A finite 'The concept of meta-models in GME differs from the meta level
state machine determines the ON/OFF physical state of the switching models in HBG.



models. The modeling paradigm defines the family of models pumps are modeled as an effort source connected to a trans-
that can be created using the resultant modeling environment, former, which is connected to a 0 junction. Pumps have one

The meta-models specifying the modeling paradigm are out-port for representing the pressure delivered by the pump.
employed to automatically generate the target domain-
modeling environment, e.g., the HBG environment. The gen-
erated modeling environment is then used to build domain .
models that are stored in a model database. The primarily
graphical, domain models can be conveniently stored in stan- r T i

dard formats including XML to be used by specific applica-
tions. We have developed a GME modeling paradigm that Ci iedPe e
describes the HBG modeling environment. F

3.3 Hierarchical and Compositional Modeling in 01

the fluid domain

Real life systems with embedded control tend to be complex,
and system designers and engineers typically have a lot of Figure 3: Hierarchical and Compositional Modeling
difficulty in generating flat models of the entire system. Hi-
erarchical and compositional modeling are useful tools that As an example, the left wing tank is connected to the left
allow the system to be constructed in a structured way by feed tank by instantiating two tank components, one pipe
modeling subsystems independently and composing them to component, and one switched pipe component. The switched
generate system models. The two main steps in this approach pipe controls the flow into the feed tank. The out port of the
are: (i) decomposition into subsystems and building mod- first tank (left wing tank) is connected to the in port of the
els of subsystems, and (ii) specifying interactions between pipe and out-port of the pipe is connected to the in-port of the
subsystems and using composition operators to build system second pipe. Since the pump is modeled to pull fuel out of the
models. This approach provides a number of advantages, left wing tank, we connect the out port of a pump component
such as simplicity in model building, independence in build- to the in port of the pipe. Fig. 3 illustrates the component
ing subsystem models, and modularity and reusability of the based and hierarchical model of this subsystem and the un-
generated components. derlying model of the some of the components.

To model the fuel transfer system, we develop models of 3.4 Modeling for diagnosis
typical components in the fluid domain, such as tanks, pipes,
and pumps. Pipes may include valves that regulate flow. Models form the core component of the tracking and diag-
Pumps and valves can be turned on and off. We assume that nosis algorithms [Biswas and Yu, 1993; Narasimhan et al.,
their switching time constants are much faster than the time 20001. The hybrid observer uses quantitative state space
constants in the fluid domain. Therefore, pumps and pipes models for tracking nominal system behavior, the fault iso-
with valves are modeled as hybrid systems. In our GME lation and identification unit uses temporal causal graphs
paradigm, subsystems are modeled as components. Interac- (TCG) for qualitative analysis and input output equation
tions between the components are specified as relations be- (JOE) models for quantitative parameter estimation. We have
tween their in-ports and out-ports. Components connected devised schemes to systematically derive these model repre-
by ports define the system model. The ports can model: (i) sentations from the HBG models created in GME.
energy transfer between components in the bond graph frame- Precise tracking of nominal system behavior requires the
work, and (ii) communication of information by signals. Sig- component parameter values in the bond graph model be ac-
nals are assumed to have no energy content. curately estimated. We describe our parameter estimation

For this work, we build first order linear models 2. Tanks methodology in the next section. For fault isolation and iden-
are modeled as a bond graph segment with a capacitor con- tification, there has to be a a one to one correspondence be-
nected to a 0 junction. Each tank component can have multi- tween faults and parameters in the model. For example, if we
ple in-ports and out-ports. In-ports have energy connections abstract a pump model and represent it as an effort source,
(bonds) to the 0 junction and out-ports have bonds from the we cannot differentiate among faults in the electrical versus
0 junction. Ports may be marked as in and out based on a mechanical/fluid part of the pump. Including a transformer
conventional direction for energy flow, but this does not mean component that models the electrical to fluid energy trans-
that energy cannot flow in the opposite direction. In case there formation at an abstract level solves this problem. A partial
is an energy flow in the opposite direction, the corresponding fault or degradation in the mechanical part of the pump can
variable takes on a negative value, be attributed to a change in the transformation parameter.

Pipes are modeled as resistors connected to a 1 junction. Once the model structure has specified and all parame-
Pipes have exactly one in port and one out-port that can be ters have been estimated, the hybrid bond graph model of
connected to ports of other tanks and pipes. The switching the complete system is derived by composing the compo-
on the pipes is achieved by specifying switching signals on nent models and flattening out the hierarchy. The designation
the 1 junction connected to the resistor. As discussed earlier, of ports as in- and out-ports, and restricting connections to

be from out-ports to in-ports only ensures the consistency of
2In reality the pressure flow relations are nonlinear, bond connections when the components are composed. The
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resulting hybrid bond graph may be used to systematically The next step is to determine the complete system config-
derive the state space and temporal causal graph model of the uration. For the fuel system we instantiate 6 tanks: 2 wing
system. In the bond graph framework, each element describes tanks, 2 fuselage tanks and 2 engine feed tanks. Each has a
equations that need to be satisfied for that component. For ex- corresponding pump. Since the outlets of the wing and fuse-
ample, for a 0 junction the pressures on all bonds incident is lage tanks and the inlet of feed tanks all have valves, we cre-
equal and net flow of all bonds is equal to zero. The proce- ated switched pipe components for each of these components.
dure to convert to state space equations may be summarized Two instances of the engine are created, and the transfer man-
as [Karnopp et al., 1990]: ifold component is also included in the model. Fig. 4 depicts

1. Identify state variables (efforts on capacitors and flow on our component-based GME model of the entire fuel system.

inductors). The individual components are connected using bond
graph junctions to build the energy model of the overall sys-

2. identify input variables (effort and flow sources). tem. The fuselage tanks supply the transfer manifold, where

3. Use constituent equations of the bond graph components the flows from the fuselage tanks sum up. This is modeled by
to derive the relations between the effort and flow vari- connecting one out-port of the fuselage tank to the in-port of a
ables in the system. pipe, and the out-port of the pipe to the in-port of the transfer

4. Substitute for all non-state and non-input variables to de- manifold. The pump associated with each tank is also con-

rive the state equation model. This step is applied repeat- nected to the in port of the pipe. This develops a high pres-

edly till all unnecessary variables are eliminated, sure at the inlet of the pipe, and hence pulls fuel from the tank
into the pipe. The flow from the wing tanks and the transfer

The algorithm to derive the TCG from the bond graph is de- manifold combine and distribute evenly to the left and right
scribed in [lMosterman and Biswas, 19991. feed tanks. One out-port of the wing tank is connected to the

3.5 Building Models of the Fuel System in port of a pipe. The out-port from these pipes and the out-

From our discussion in earlier sections, the primary model port from the transfer manifold are connected to a 0 junctionFromourdisusson i ealie setios, te pimay mdel to combine the flows. The 0 junction is connected to the in-

building steps are: (i) identify subsystems and model them at to ofbswithe flows The outionts connected to the

the appropriate level of detail, (ii) compose system models by port of switched pipes whose out-ports are connected to the
specifyin app riactions aemo ng d taih,(ii)o se s systems, and()elst in-ports of the feed tanks. In order to maintain stability when
specifying interactions among the subsystems, and (iii) esti- both feed tanks are closed, a bleed resistor is added to the
mate parameters of the model, piping. This resistor bleeds fuel into the left feed tank. The

As discussed earlier, tanks, pipes, and pumps are the main out-ports of the feed tanks are connected to the in-ports of the
components of the fuel system model. In addition, we need corresponding engines through pipes.
to build models for the transfer manifold and the engines. For The next step is to estimate the model parameter values.
the scenarios we deal with, it was sufficient to model the en- For the scenarios we model, the engine fuel consumption rate
gines as constant flow sources, i.e., a sink. Engines have one is set at g gpm for both engines 3. All other parameters are es-
in-port that represents the flow into the engine from the feed timated from experimental data of an entire fuel burn curve,
tank. The transfer manifold is modeled as a single capacitor where all the fuel from the wing and fuselage tanks was con-
connected to the 0 junction. The transfer manifold has mul-
tiple in-ports representing flow into, and multiple out-ports 3in this discussion the actual numbers are not used to avoid any
representing flow out of the transfer manifold, concerns about releasing sensitive data.



sumed by the engines. We used the rate of depletion of fuel ponent subsystems. The HBG model also contains the switch-
in the tanks and the flow out of the tanks when the level con- ing conditions for mode changes. These are parsed and stored
trol valves are closed to calculate the individual tank capaci- in the ASM. All the diagnosis algorithms modules were im-
tances. For the left feed tank the fuel depletion rate is approxi- plemented in C++. The SWIG toolkit was used for Python-
mately d lbs/s, and hence we determine the capacitance of the C++ interactions.
left feed tank to be c' f 2. Similarly, the right feed tank ca- The parser reads in the model file, interprets it and cre-lb

pacitance is estimated to be c, We performed similar ates the HBG data structure. The symbolic equation gener-pactaceisesimte t b ,.lb" ator (SEG) takes the HBG and the current mode of the sys-
calculations to determine the wing and fuselage tank capac- tor (nG takes the stand the e nt mode of the

5 2 tem and derives the state space equation (SSE) model of the
ities (approximately c, 1b ). To estimate the resistances, system, which is stored in the ASM. When tracking system
we used the pressure drop and flow through the pipe corre- behavior, the hybrid observer reads in the data sample for the
sponding to the resistance to calculate the resistance value, next time step from the data file, and checks to see if any con-
The pump effort and efficiency values were given nominal, trolled (specified in data file) or autonomous (stored in ASM)
realistic values. mode changes have occurred. When mode changes occur,

the SEG is invoked to re-calculate the SSE model. To ac-
4 Diagnosis commodate for model disturbances and measurement noise,

a Kalman filter is built from the current SSE model to track
system behavior. At each time step, the fault detector com-

HBG • Softwý pares the system output with the observer estimates to deter-
Mode _s MO&F A[ict mine if a fault has occurred in the system. When the fault

,- -------• --- --•-- detector triggers, the diagnosis module is activated. The di-

sagnosis module uses propagation algorithms on the TCG to
generate fault candidates that are consistent with the observed

- - - --- discrepancies. Continued tracking by matching the fault sig-
I-- . ...... natures generated for each candidate hypotheses helps refine

T'" s T the candidate set. For details on the hybrid observer and di-

S- - - Narasimhan and Biswas, 2002].
In subsequent sections we briefly describe the hybrid ob-

server and the diagnosis modules and illustrate their function-
Figure 5: Software Architecture for Diagnosis ing by applying them to a diagnosis problem on the fuel sys-

tem. In the experimental setup, the fuel system is controlled
The diagnosis task involves tracking dynamic system be- by the sequence defined in Table 1. The data for the experi-

havior that includes continuous evolution plus discrete model ments was generated using a Matlab/Simulink simulation that
changes till the fault detector signals a fault. At this point, was developed at Vanderbilt University. We assume pressure
the fault isolation unit is invoked. Discrete mode changes values are measured at the output of each of the six tanks of
require dynamic switching of system models, and may also the fuel system. The fault introduced is an abrupt decrease in
involve discontinuous changes in the system variables. The the left fuselage tank pump efficiency at time step 200. This
fault isolation unit also needs to consider change in modes occurs in the mode when only the left fuselage tank is sup-
when matching fault signatures with actual system behavior, plying fuel, and only the left feed tank is receiving fuel.
This motivates the software architecture for diagnosis, illus-
trated in Fig. 5. The input to the diagnosis system is the model 4.1 Hybrid Observer and Fault Detector
as an XML file and the experimental data as a text file. Each
line of the data file represents one sample of the data. Al- The hybrid observer tracks the system behavior as it evolves
though the current version uses a data file as input, replacing and the fault detector compares the observer output to the sys-
it with data from an actual system does not alter the rest of the tem output to determine if a fault is present in the system. The
architecture. Each sample of data includes all input values, hybrid observer performs the following tasks:
all measured output values, and the values of all switching
signals. The output of the diagnosis module is the set of diag- o Continuous tracking of system behavior in current mode,
nostic hypotheses that are consistent with the model and data.
The diagnosis output at each time step can be observed in a * Determining if a mode change has occurred, and
GUI implemented in Python (wwwvpython.org). The active o Initializing the observer in a new mode, with the new
state model (ASM) is an internal data structure that maintains state and new model.
information about the system including the current mode, cur-
rent state estimates, and current diagnostic hypotheses. This The discrete time form of the SSE models are derived to
structure is updated at each time step from information re- track system behavior. To account for model disturbances and
ceived from the observer and the diagnosis module. The hy- noisy measurements, we use a Kalman filter to track system
brid bond graph (HBG) data structure contains the flattened behavior. This requires computation of the R and Q matrices
HBG model of the system after composition of all active com- that model the disturbance and noise variances, and K, which



represents the Kalman gain matrix. - - .I! X

"= AM" + Bu + K(y - ') 26UU
S= C•.2550-

P = AP + PA" + BQBT' - KRKT'
K = PC'R-1  2500

In our experiments, R and Q are diagonal matrices with val- 2 4 5 0
ues of 0.01 along the diagonal. The Kalman gain (K) is ini-
tialized to a diagonal matrix of arbitrarily high value (100 in 2400 0
our experiments). This gain matrix typically converges to its 23-..
true value in a few time steps.

Mode changes may be of two types: controlled or au- 23%0 50
tonomous. Controller issued switching commands need to 0 50 100 50 1200 250 300 35O 40
be provided in the data file. These correspond to the con-
trolled mode changes in the system. At each time step, the Figure 6: Hybrid Observer Sample Run
observer checks to see if the data set indicates a mode change.
All autonomous change conditions are converted so that they
contain only state and input variables. The observer uses in- 2. A quick roll forward process using progressive moni-
put data and estimated state values to calculate if the con- toring techniques to refine the possible fault candidates.
ditions for any autonomous change evaluates to true. This The goal is to retain only those candidates whose fault
is done at each time step also. For the fuel system, there signatures are consistent with the current sequence of
are no autonomous changes and hence the data file provides measurements. After the occurrence of a fault, the
sufficient information to determine if a mode change has oc- observer's predictions of autonomous mode transitions
curred. If a controlled or autonomous mode change is indi- may no longer be correct, therefore, determining the
cated, the observer computes the new mode. The equation consistency of fault hypotheses also requires the fault
solver is invoked to derive the new SSE model. The ob- isolation unit to roll forward to the correct current mode
server re-initializes the state based on the reset function spec- of system operation.
ified, and continues the tracking in the new mode with a new 3. A real-time parameter estimation process using quan-
Kalman filter that is derived from the A and B matrices in the titative parameter estimation schemes. The qualitative
new mode. reasoning schemes are inherently imprecise. As a result

Fig. 6 illustrates a sample run of the hybrid observer for the a number of fault hypotheses may still be active after
experimental setup described earlier. Gaussian noise with a Step 2. We employ least squares based estimation tech-
2% noise variance was generated using the Matlab models as niques on the input-output form of the system model to
described earlier. We illustrate the tracking of pressure in the estimate consistent values of the fault parameter that is
left fuselage tank. The thick line represents the noisy system consistent with the sequence of measurements made on
output (it is more like a waveform than a line due to the noise the system.
in the measurements) and the thin line represents the observer The models used in these three steps, temporal causal graph
estimates. Until time step 200 (at which point the fault was (TCG) and input output equations (JOE) model, are derived
introduced) we notice that this line is completely subsumed d fro tp q b
by the thick line indicating accurate tracking. However, after directly from the hybrid bond graph.timeste 20 th thn lne evites romthethik lne ndiat- We illustrate the diagnosis algorithms for the experiment
time step 200 the thin line deviates from the thick line indicat- discussed in the previous section. As Fig. 5 illustrates, after
ing a fault. The fault detector (uses a 5% detection threshold) time step 200 the actual pressure in the left fuselage tank is
flags the fault. In the next section, we describe the fault iso- below the predicted value. The fault detector flags this and

triggers the diagnosis process. We use the roll back proce-

4.2 Fault Isolation and Identification dure to propagate this discrepancy back through our models
to generate the fault candidates. In the current mode, we get

Our fault isolation and identification methodology, described the following candidates: Left Fuselage Pump-, Left Fuselage
in greater detail in [Narasimhan and Biswas, 20021, for hy- Pipe+, Transfer Manifold+, Bleed Resistor+, Left Switched
brid systems is broken down into three steps: Pipe+, Left Feed Pump-. Since the left fuselage tank was not

1. A fast roll backprocess using qualitative reasoning tech- open in any of the previous modes, no candidates are gener-
niques to generate possible fault hypotheses. Since the ated in any previous modes.
fault could have occurred in a mode earlier than the cur- The next step rolls forward to check for the consistency
rent mode, fault hypotheses need to be characterized as of the effects of the faults hypothesized against actual sys-
a two-tuple (mode, fault parameter), where mode indi- tem measurements. Since no autonomous mode changes
cates the mode in which the fault occurs, and fault pa- are present and we assume that all controller commands are
rameter is the parameter of an implicated component known, we know exactly what mode the system is in. We
whose deviation possibly explains the observed discrep- generate signatures (effects of fault) in that mode for all the
ancies in behavior. above candidates. In the current mode we cannot distinguish



between the candidates because they have similar signatures. rate models. The presence of noise in the data complicates
However, when a mode change occurs (right feed tank is also the tracking and fault detection task. For the given set of
opened), we regenerate signatures in the new mode and note measurements, our tracking mechanisms worked well with
that Left Switched Pipe+ and Left Feed Pump- do not affect fault-free data provided the variance of the added Gaussian
the right feed tank pressure. However, we notice a discrep- noise was limited to 2%. Part of the reason for such low
ancy in the right feed tank pressure, hence we can drop these noise thresholds was the use of a naive threshold-based fault
candidates. We cannot distinguish between the other candi- detector in these experiments. The diagnosis system always
dates (Left Fuselage Pump-, Left Fuselage Pipe+, Transfer generated the true fault hypothesis, but in a number of cases
Manifold+) with the selected set of measurements. In order the hypothesis set contained more than one fault candidate.
to distinguish between these candidates we need more mea- This could be attributed to lack of detail in the models and the
surements. For example, we could model the pump in more need for more measurements in the analysis. Also, parameter
detail and add a sensor to measure the current drawn by the estimation was not included as part of the experiment. In pre-
pump motor. This would let us identify faults in the pump as vious work [Narasimhan and Biswas, 20021, we have shown
opposed to faults in pipes that the pump is connected to. that parameter estimation often helps to isolate the true fault.

Table 2 lists the different fault classes in the fuel system. In future work, we would like to build more detailed mod-
Each fault class represents multiple instances of the faults els of the different components of the fuel system in an at-
in the same component. The fault classes are numbered as tempt to diagnose a larger set of faults. The experiments need
follows: 1) Wing Tank Pump (WTP), 2) Wing Tank Pipe to be extended to run with real data provided from Boeing, as
Resistance (WTR), 3) Fuselage/Transfer Tank Pump (TTP), opposed to simulated Matlab data that we generated at Van-
4) Fuselage/Transfer Tank Pipe Resistance (TTR), 5) Trans- derbilt University. We would also like to run sensitivity anal-
fer Manifold Resistance (TMR), 6) Switched Pipe Resistance ysis tests to the diagnosis system performance under varying
(SPR, 7) Feed Tank Pump (FTP), and 8) Feed Tank Pipe Re- noise and disturbance conditions. Finally we would like to
sistance (FTR). The results of our diagnosis experiments for build more robust techniques for fault detection and parame-
these sets of faults appear in the table. The ,/ mark in row i ter estimation to combat the effects of noise and disturbance.
and column j indicates that if the roll back process generated
candidates i and j, one of them will be dropped by the roll for- 6 Acknowledgments
ward process. The x mark indicates that the current control
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