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Abstract. Unlike the spacecraft domains that Livingstone has been applied
Planetary rovers provide a considerable challenge for artificial in- in, rover performance depends significantly on environmental inter-

telligence in that they must operate for long periods autonomously, actions. The on-board sensors provide streams of continuous valued
or with relatively little intervention. To achieve this, they need to data that varies due to noise, but also due to the interaction between
have on-board fault detection and diagnosis capabilities. Traditional the rover and its environment. For example, a rover may have a sen-
model-based diagnosis techniques are not suitable for rovers due to sor that reports the current drawn by a wheel. In normal operation,
the tight coupling between the vehicle's performance and its envi- this quantity may vary considerably, increasing when the vehicle is
ronment. Hybrid diagnosis using particle filters is presented as an climbing a hill, and decreasing on downward slopes. The diagnosis
alternative, and its strengths and weaknesses are examined. We also system needs to be able to distinguish a change in the current drawn
present some extensions to particle filters that are designed to make due to the terrain being traversed from a change due to a fault in the
them more suitable for use in diagnosis problems. wheel. A second issue for rovers is that their weight and power is

very tightly constrained. For this reason, any on-board diagnosis sys-
1 Introduction tem must be computationally efficient, and should be able to adapt

to variations in processor availability. Ideally, we would also like it

Planetary rovers provide a considerable challenge for artificial intel- to adapt based on its own performance, spending more time on diag-

ligence in that they must operate for long periods autonomously, or nosis when a fault is likely to have occurred, and less time when the

with relatively little intervention. To achieve this, they need (among system appears to be operating normally.

other things) to have on-board fault detection and diagnosis capabil- A rover's close coupling with its environment poses a considerable

ities in order to determine the actual state of the vehicle, and decide problem for diagnosis systems that use discrete models. A particular

what actions are safe to perform. However, as we will discuss be- sensor reading may be normal under certain environmental condi-

low, traditional approaches to diagnosis are unsuitable for rovers, and tions, but indicative of a fault in others, so any monitor that trans-

we must turn to hybrid approaches. In this paper we describe an ap- lates the sensor reading into a discrete value such as "nominal," or

proach to hybrid diagnosis based onparticlefilters [2, 7, 3]. We show "off-nominal high" must be sophisticated enough to take all the en-

that the characteristics of diagnosis problems present some difficul- vironmental conditions into account. This can mean that the diagno-

ties for standard particle filters, and describe an approach for solving sis problem is effectively passed off to the monitors-the diagnosis

this problem. We will use rovers as a motivating example through- system is very simple, but relies on discrete sensor values from ex-

out this paper, but the techniques we describe can be applied to any tremely complex monitors that diagnose the interaction between the

hybrid diagnosis problem. system and its environment as part of translating continuous sensor

The diagnosis problem is to determine the current state of a system values into discrete variables. To overcome this problem, we need to

given a stream of observations of that system. In traditional model- reason directly with the continuous values we receive from sensors.

based diagnosis systems such as Livingstone [14], diagnosis is per- That is, our model needs to be a hybrid system, consisting of a set of

formed by maintaining a set of candidate hypotheses (in Livingstone, discrete modes that the system can be in, along with a set of continu-

a single hypothesis was used) about the current state of the system, ous state variables. The dynamics of the system is described in terms

and using the model to predict the expected future state of the system of a set of equations governing the evolution of the state variables,
given each candidate. The predicted states are then compared with and these equations will be different in different modes. In addition,
the observations of what actually occurred. If the observations are a transition function describes how the system moves from one mode

consistent with a particular state that is predicted, that state is kept as to another, and an observation function defines the likelihood of an

a candidate hypothesis. If they are inconsistent, the candidate is dis- observation given the mode and the values of the system variables.

carded. Traditional diagnosis systems typically use a logic-based rep- This hybrid model can be seen as a partially observable Markov
resentation, and use monitors to translate continuous-valued sensor decision process (POMDP) [1]. POMDPs are frequently used as a

readings into discrete-valued variables. The system can then reason representation for decision-theoretic planning problems, where the

about the discrete variables, and compare them with the predictions task is to determine the best action to perform given the current es-

of the model using constraint propagation techniques. timate of the actual state of the system. This estimate, referred to as



the belief state,is exactly what we would like to determine in the di- 2 Modeling a Planetary Rover
agnosis problem, and the problem of keeping the belief state updated As we said above, we model a rover as a hybrid system. The dis-
is well understood in the decision theory literature. The belief state
is a probability distribution over the system states-that is, for every crete component of the rover's state represents the various opera-
state it gives the probability of being in that state, given our prior be- tibes t mod of the whiee the c ontin uous vartous
liefs about the state of the system, and the sequence of observations scribes thc speed of the wheels, thc current being drawn by various
and actions that have occurred so far. subsystemsV,and so on. Following [ 13], our rover model consists of a

Unfortunately, maintaining an exact belief state is computation- tuple (M, V, T, E, 0) where the elements of the tuple are as follows:
ally intractable for the types of problem we are interested in. Since . M is the set of discretc modes the system can be in. Wc assume
our model contains both discrete and continuous variables, the belief that M is finite, and write m for an individual system mode.
state is a set of multidimensional probability distributions over thecontnuos satevarabls, ithonesuc ditriutin fr cch ode * V is the set of variables describing the continuous state of thecontinuous state variables, with one such distribution for each mode sytm
of the system. These distributions may not even be unimodal, so just system.
representing the belief state is a complex problem, but updating it * T is a transition function that defines how the system moves from
when new observations are made is intractable for hybrid models in onc mode to another over time. We write PrT(m, tn) for the
all but the simplest of models (see [8] for an illustration of this). probability that the system movcs from mode fnc to mode *a, .Theefoe, n aproimaionnees t bemad. A wesai abve, We may also include a second transition function PrT(in, a, in')
Therefore, an approximation needs to be made. As we said above which is used when an action a occurs. This gives the probability
we will use a particle filter to approximate the belief state and keep of moving from mn to mn' when action a is executed.
it E is a set of equations that describe the evolution of the continu-

A particle filter represents a probability distribution using a set of ous abs of equations that decrb tt o the tinu
discrete samples, referred to as particles, each of which has an associ- ousvaiables ov th a apply at a given tie
ated weight. The set of weighted particles constitutes an approxima- potentially depend on tht system mode, so e write Em for the
tion to the belief state, and has the advantage over other approaches equatio a apply qo gquations in generalinclude a noisc term to account for random variations in the state
such as Kalman Filters [6] that it can represent arbitrary distributions. variables. Here we will assume Gaussian noise, with the parame-
To update the distribution when a new observation is made, we treat
each particle as a hypothesis about the state of the system, apply the ters ofut ian dt idin dividuall fo ea eation.it t moe i toa nw sate an mutipy te wigh ofthe * 0 is a function mapping the system state into observations. Wcm odel to it to m ove it to a new state, and m ultiply the w eight of thewi l a s m th t h e o er b e sy e m c r c e i t cs re o emodel towill assume that thc observable system characteristics are some
particle by the likelihood of making the observation in that new state. subset of the system variables V, with their values corrupted by
To prevent a small number of particles from dominating the proba- Gaussian noise agai with arameters that may be a function of
bility distribution, the particles are then resampled, with a new set of g
particles, each of weight one, being constructed by selecting samples observed value of some variable v in mode ri.
randomly based on their weight from the old set.

Particle filters have already proven very successful for a number of We will also write Pr(s'ls) for the probability distribution over
tasks, including visual tracking [7] and robot navigation [4]. Unfor- future states s' given some state s,where s and s' are hybrid states,
tunately, they are less well suited to diagnosis tasks. This is because so Pr(1Is) includes both the distribution over the future mode given
the mode transitions that we are most interested in detecting namely by PrT(m'Im),and the distributions over the continuous variables
transitions to fault states typically have very low probability of actu- given by Em
ally occurring. Thus, there is a risk that there will be no particle in a The diagnosis problem now becomes the task of determining the
fault state when a fault occurs, and the system will be unable to diag- current mode in that the system is in, and the values of all the state
nose the fault. We propose a solution to this problem by thinking of a variables in V (the results we will present will only show the proba-
particle filter as a convenient way to divide the computation time that bility distribution over discrete modes, but the algorithm produces a
is available for doing diagnosis between the candidate states that the distribution over the full hybrid state).
system could be in. A conventional particle filter splits the particles The experiments we will present in Sections 3 and 5 use actual
(and hence the computation time) according to how well the states telemetry data from NASA Ames Marsokhod rover. The Marsokhod
predict the observations, but with this approach we will also spend is a planetary rover built on a Russian chassis that has been used in
some computation time on fault states that are important to diagnose. field tests from 1993-99 in Russia, Hawaii, and the deserts of Ari-
We do this simply by ensuring that there are always some particles zona and California. The rover has six independently driven wheels,
in those states. As we will show, the details of the particle filter algo- and for the experiments we present here, the right rear wheel had a
rithm mean that we can add these additional particles without biasing broken gear, and so rolls passively. The Marsokhod has a number of
the diagnosis that results. sensors, but we will restrict our attention to diagnosing the state of

In the next section we discuss the hybrid model of the rover in the broken wheel, and will therefore use only data from thc wheel
detail. In Section 3 we describe particle filtering and demonstrate its current and wheel odometry sensors. We will treat each wheel ide-
weaknesses when applied to diagnosis problems, and in Section 4 pendently in the diagnosis. For each wheel, we have a model, taken
we will describe our modifications to the standard particle filter in from [13], with the following characteristics:
detail. In Section 5 we present some preliminary results on real rover
data, using a simple version of our proposed approach. The final sec- * M consists of 23 system modes of which 14 are fault states.
tion looks at the relationship between this work and some previous * V consists of variables for the wheel current and wheel speed, and
approaches to this problem, and discusses some future directions for the derivatives of current and speed.
this work. * T is a fairly sparse matrix, with at most six successors for any

given mode. The probability of a transition to a fault state is 0.01
or less. All commands are described by one transition function



for the start and one for the end of a command because the data 1. Create a set of n particles where each particle pi has a state si
doesn't identify which command occurred, and a weight wi. si is sampled randomly from the prior state

"* The state equations in E consist of the previous value plus a con- distribution, and wi = 1.
stant term and noise. The noise is Gaussian with standard devia- 2. For each time step, do:
tion in the range 0.001 to 1.0, and the equations are independent
for each state variable. (a) Replace each particle pi with A as follows:

"* The equations in 0 are independent for each variable (but vary i. Select a future state s• by sampling from Pr(s lsi, the
depending on the mode), and include a Gaussian noise term with distribution over possible future states given by the model.
a standard deviation that varies from 0.001 to 1.0. ii. Re-weight pi by multiplying its weight by the probability

of the observations o given s' as follows:

3 Particle Filters I= Pr(oIs)w

A particle filter approximates an unknown probability distribution
using a weighted set of samples. Each sample or particle consists of (b) Resample n new particles pi, ••, p• by copying the p' cur-
a value for every state variable, so it describes one possible complete i
state the system might be in. As observations are made, the transition samples with the following probability:

function is applied to each particle individually, moving it stochasti-
cally to a new state, and then the observations are used to re-weight Pr(pi = p') _

each particle to reflect the likelihood of the observation given the _=1 W_

particle's new state. In this way, particles that predict the observed
system performance are highly weighted, indicating that they are in Figure 1. The particle filtering algorithm.
likely states of the system. A major advantage of particle filters is
that their computational requirements depend only on the number of
particles, not on the complexity of the model. This is of huge im-
portance to us as it allows us to do diagnosis in an anytime fashion; during the Monte Carlo predictive step. This situation is known as

increasing or decreasing the number of particles depending on the saniple imipoverishment.

available computation time. Figure 2 illustrates this problem. Each graph shows the most likely

To implement a particle filter, we require three things: modes that the wheel is in (the y-axis is the total weight of the parti-
cles in each mode, so a value of 10000 implies that all particles are in

"* A probability distribution over the initial state of the system. that mode), shown over part of one of the trials in which the wheel is

"* A model of the system that can be used to predict, given the cur- initially idle, and then at step 12 is commanded to drive forward at a

rent state according to an individual particle, a possible future state fixed speed. The graphs on the left show the performance of Wheel 1,
of that particle. Since T is stochastic, and E includes noise terms, which is operating nominally. The graphs on the right show the per-
the predictive model selects a new state for the particle in a Monte formance of Wheel 6, which is faulty. In the top line, the probability

Carlo fashion [5], choosing by sampling from the probability dis- of the fault occurring is 0.1 rather than its true value of 0.01. Here
tribution over possible future states, the fault is quickly detected in Wheel 6. In the bottom line of graphs,

"* A way to compute the likelihood of observing particular sensor the fault probability is set to its true value, and in this case the fault

values given a state. In our case, this is given by the observation is not successfully detected because insufficient particles enter the

function 0. fault state. One might expect that once a particle enters the fault state
its weight would be high since it would predict well, and at the re-

The particle filtering algorithm is given in Figure 1. Step (i) is the sampling step it should lead to several new particles being created.
predictive step, where a new state is calculated in a Monte Carlo way Unfortunately, this did not occur in this situation because although

for each particle, and this new state is then conditioned on the obser- some particles did enter the fault state, their continuous parameter
vations in step (ii) (we call this the re-weighting step). The predictive values did not agree with the observations well, so they still had low
step is performed by applying T to each particle, and then apply- weights. The continuous parameters did not match because each of
ing the appropriate equations from E to the state variables, sampling the particles that entered the fault state came from the COMMANDE-
values from the Gaussian error terms. Once the particles have been DRUNNING state, in which the current and wheel speed are expected
re-weighted, we can then calculate the probability of each mode sim- to be much higher than the observed values.
ply by summing the weights of the particles in the mode. We refer to
step (b) as the resanipling step. For more details on the properties of 4 Importance Sampling
particle filters see e.g. [3].

The simplest solution to the sample impoverishment problem is to
3.1 Problems with Particle Filters for Diagnosis increase the number of particles being used. Given the constraints

imposed on on-board systems, this approach is probably unrealistic.
Unfortunately, there are a number of difficulties in applying particle The data presented above was implemented in Java, using 10,000
filters to diagnosis problems. In particular, the filter must have a par- particles per wheel, and runs in approximately 0.5 seconds per up-
ticle in a particular state before the probability of that state can be date on a 750MHz Pentium 3. This is probably at the upper limit
evaluated. If a state has no particles in it, its probability of being the of the number of particles we could expect to use on-board a rover
true state of the system is zero. This is a particular problem in diag- as the time available for diagnosis is longer, but there will be less
nosis problems because the transition probabilities to fault states are computation devoted to diagnosis. Thus running with ten times as
typically very low, so particles are unlikely to end up in fault states many particles (which is roughly equivalent to multiplying the fault
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Figure 2. Results for Wheel I (left side) and Wheel 6 (right side). In the top row, the probability of a fault is ten times its true value, while the bottom row
uses the true probabilities. The fault (GEARANDENCODERFAULTRUNNING)in Wheel 6 is quickly detected in the top row, but is never discovered in the

bottom row due to sample impoverishment.

probability by ten) is probably impractical on the rover, and even tribution P, but we can't. Instead, we sample from some other dis-
10,000 particles may be unrealistic as the model gets more complex. tribution Q, and weight each sample s by Prp (s)/ PrQ (s), the ratio
This could be somewhat overcome by only increasing the number of the likelihood of sampling s from P to the likelihood of sampling
of particles when there is some evidence that the system is predict- it from Q. The weighted sample is then an unbiased sample from
ing poorly. In order to achieve this, we need some measure of when P, as long as Q is non-zero everywhere that P is non-zero. In fact,
this occurs. The obvious measure is to look at the total weight of the importance sampling is exactly what the particle filter algorithm is
particles after conditioning on the observations. If no particles are doing. For a particle filter, the unknown distribution P is the poste-
predicting the observations well the total weight should drop. Un- rior distribution we are trying to compute, Q is the prior distribution
fortunately, in practice this is rarely useful because there are a num- (the set of samples before the observation), and the re-weighting step
ber of other possible causes for this behavior. For example, particles corresponds to the importance sampling weight computation.
moving from a state in which there is high confidence in the sen- Given that whatever we choose for Q, the weighted samples are
sor readings to a state with more sensor noise will tend to drop in an unbiased sample from P, we can add arbitrary samples to our
weight even if they are still predicting the observations well. We see particle filter at the resampling step, and still end up with an unbiased
this in the Marsokhod model because the IDLE mode has relatively posterior distribution. We will use this property to ensure that we
large variance for the observation noise, whereas the COMMANDE- have samples in the system modes that are important to us (hence
DRUNNING mode has smaller variance, so the total particle weight the name importance sampling). The question then is how to choose
increases when the system moves from the IDLE to the COMMANDE- Q. We can imagine an oracle that provides a set of candidate states
DRUNNING mode, even for wheel 6 where COMMANDEDRUNNING the system might end up in, given the current distribution over state.
predicts the observations poorly. When we resample, we simply make sure that there are always some

Another way to reduce the likelihood of sample impoverishment particles in the states provided by the oracle. If those states explain
is to take advantage of some results from importance sampling (see the subsequent observations well, the particles in them will get high
e.g. [9]). In importance sampling, we want to sample from some dis- weight, and are likely to be resampled with more particles at the next
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Figure 3. Results for the importance sampled particle filter. All states with > 25% probability were used as starting points for the forward search, and 0.5%
of the particles were assigned to each of the found states. On the left are results for wheel 1, and on the right for wheel 6.

step. On the other hand, if they predict the observations poorly, the a constant speed. As before, wheel 6 is faulty, with a broken gear
particles will quickly disappear again. (this corresponds to the GEARANDENCODERFAULTRUNNING state

The question that remains is how to implement the oracle. For a in the model).
complex system such as a planetary rover, with many components Figure 3 shows the results for the importance sampled particle fil-
each with its own set of possible failure modes, there are exponen- ter. We used single step forward search from all states with probabil-
tially many possible failure modes, so this is a non-trivial problem. ity > 0.25 to select the set of bias states. Each of these states was
However, one approach that seems promising is to use a traditional then guaranteed to receive at least 0.5% of the total number of par-
model-based diagnosis system such as Livingstone [14]. These dis- ticles at each re-sampling step. The left hand graph is the probable
crete systems typically operate more quickly than hybrid approaches, states for Wheel 1, as before. Like the graph in the bottom row of
so can be used to suggest hypotheses without significantly affecting Figure 2, the PREMATUREACTION state was given high probability
computation time. We pointed out in the introduction that they are not before step 13. This state appears where the effects of an action are
in general suitable for diagnosing rovers, but they could be used to seen before the signal to perform the action, due to problems with the
identify sets of likely system modes for the hybrid system to be used rover telemetry. In this case it is a spurious result due to the model
in. The integration of Livingstone with the particle filter approach is of the IDLE state not allowing sufficient noise in the observations. A
currently work in progress, as it adds a number of additional compli- small adjustment to the model would remove this problem, which is
cations including building an additional system model, and ensuring only present in the data for two of the wheels. The right hand graph
that the discrete and hybrid models agree with one another and can shows the same data for Wheel 6. In this case, the fault state domi-
easily be translated back and forth. nates the probability distribution after step 20, seven steps after the

For simpler systems such as the Marsokhod wheel diagnosis we command to drive the wheel was observed, as compared with three
have used in this paper, the above approach is unnecessary. Instead, steps for the model with increased fault probabilities (Figure 2).
we can use an oracle based on forward search from the current high-
probability states. Since each system mode in this model has at most
six possible successors, and there are typically only two to three high 6 Discussion and Relation to Other Work

probability modes at any time, we find in practice that in most cases An important thing to note is that standard particle filters treat the
a simple one-step look-ahead search adds fewer than five modes to model essentially as a black box, using it only to predict future states
those that already contain particles, of the system. We have described one approach that exploits the

structure in the model to make diagnosis using particle filters more

5 Results effective. This is by no means the only way to exploit that structure,
and we are in the process of looking at other techniques. Possibilities

The results we present here are based on the Marsokhod model we include making a single-fault assumption (but relaxing it if it predicts
described in Section 2. Dr. Rich Washington supplied the model and the observations poorly), and taking advantage of independence be-
the data, which came from his work on using Kalman filters for rover tween components in the system to reduce the number of samples
diagnosis [13]. The only changes made to the model were to make needed, or even to diagnose subsystems independently.
it suitable for use with a particle filter; no changes were made to One closely related piece of work is Verma et al.'s decision-
model parameters or transition probabilities. To demonstrate our ap- theoretic particle filter [ 11]. Their approach is similar to ours, but
proach we use a small piece of one of the telemetry data files (the they assign a utility-which corresponds to how important each state
same piece used in Section 3) in which the rover is initially idle, and is to diagnose-to every state and multiply the probability of a tran-
then a drive command is issued, resulting in an increase in current to sition by the utility of the state that results. This alters the transition
each wheel, followed by a corresponding increase in speed, and then function to favor important states, rather like the approach we took



in Figure 2. For relatively simple diagnosis tasks such as the one fault detection and diagnosis in dynamic systems', in Proceedings of
we have presented here, the approaches seem very similar. However, the Seventeenth National Conference on Artificial Intelligence, (2000).

designing a utility function to produce the right diagnoses, without [9] B. D. Ripley, Stochastic Simulation, Wiley, New York, 1987.
[10] Sebastian Thrun, John Langford, and Vandi Verma, 'Risk sensitive par-

causing too many false diagnoses of faults is a difficult task, espe- ticle filters', in Neural Information Processing Systems (NIPS), (De-
cially as any reasonable utility function would give all fault states cember 2001).
a high utility. In [10], they refine this approach, again using a risk [11] V. Verma, J. Langford, and R. Simmons, 'Non-parametric fault iden-

.function that scores states by how important it is to diagnose them tification for space rovers', in International Symposium on Artificial
Intelligence and Robotics in Space (iSAIRAS), (2001).

correctly, but this time modifying the particle filter algorithm so that [12] R. Volpe, I. A. D. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das,
the samples are distributed according to the product of the posterior 'The CLARAty architecture for robotic autonomy', in Proceedings
probability distribution and the risk factor. This ensures that samples of the 2001 IEEE Aerospace Conference, Big Sky, Montana, (March
in high-risk states have higher weights, and the true posterior can be 2001).
recovered from the risk-sensitive posterior, but still suffers from the [13] Rich Washington, 'On-board real-time state and fault identification

for rovers', in Proceedings of the IEEE International Conference on
problem of sample impoverishment. These approaches are orthogo- Robotics and Automation, (April 2000).
nal to the approach described here, and we are currently working on [14] Brian C. Williams and P. Pandurang Nayak, 'A model-based approach
combining the two. to reactive self-configuring systems', in Proceedings of the Thirteenth

Another related effort is the work of Washington [13] that applies National Conference on Arificial Intelligence and Eighth Innovative
Applications of Artficial Intelligence Conference, pp. 971-978, Port-

Kalman Filters to this problem. In this work, the continuous dynam- land, Oregon, (1996). AAAI Press The MIT Press.
ics in each mode is tracked by a set of Kalman filters. The main
problem with the approach is that the number of filters tends to in-

crease over time because each time a transition is made to a state the
initial conditions for the filter are different, and filters with differ-
ent initial conditions cannot be combined. This is not a problem for
particle filter-based approaches because the particle filters can rep-
resent arbitrary distributions over the parameter values, so particles
entering a state with two different sets of initial conditions will form
a bi-modal distribution. As we said above, we used the model and
data from this paper in our own work. We see fewer errors in the
mode identification with our approach than in Washington's paper,
although we are sometimes slower to identify the fault, and our com-

putational requirements are somewhat higher.
As we said in the introduction, this paper is intended as a proof

of concept. There is still much work to do on the problem of how
to integrate a model from Livingstone with this system to act as an
oracle. We have demonstrated that a simple look-ahead search per-
forms quite well, but this is clearly inadequate for large diagnosis
problems, particularly as most faults can occur at any time, so the
one step lookahead is unlikely to scale to very large problem. We are
also examining a number of other approaches to improving diagno-
sis with particle filters, such as backtracking when prediction is poor,
and re-sampling past states based on observations that occurred more
recently. Finally, we are investigating how a diagnosis system of this
type would fit with the CLARAty rover architecture [ 12] being used

for future NASA missions to Mars.
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