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ABSTRACT

We have used the variational and fractional-dimensional space approaches in a study of the
virial theorem value and scaling of the shallow-donor binding energies versus donor Bohr radius
in GaAs-(Ga,AI)As semiconductor quantum wells and quantum-well wires. A comparison is
made with previous results with respect to exciton states. In the case the donor ground-state
wave function may be approximated by a D-dimensional hydrogenic wave function, the virial
theorem value equals 2 and the scaling rule for the donor binding energy versus quantum-sized
Bohr radius is hyperbolic, both for quantum wells and wires. In contrast, calculations within the
variational scheme show that the scaling of the donor binding energies with quantum-sized Bohr
radius is in general nonhyperbolic and that the virial theorem value is nonconstant.

INTRODUCTION

Impurity and exciton states may be significantly modified by the barrier-potential
confinement in quantum-sized semicondutor heterostructures, and much experimental and
theoretical work have been devoted to the quantitative understanding of their properties in GaAs-
GalxAlxAs quantum wells (QWs), quantum-well wires (QWWs), and semiconductor
heterostructures in general. Recently, the scaling of the exciton binding energy in semiconductor
QWs and QWWs was numerically investigated by Rossi et al [1], who found that in the strong
confinement limit the same potential-to-kinetic energy ratio (virial theorem value) holds for quite
different wire cross sections and compositions, and claimed that a universal parameter would
govern the scaling of the exciton binding energy with size. Zhang and Mascarenhas [2]
reexamined the subject by calculating the exciton binding energies and the corresponding virial
theorem value in QWs and QWWs with infinite confinement barriers, and found that a shape-
independent scaling rule does exist for QWWs, but argued that a virial theorem value being or
not a constant is irrelevant. In particular, they found that the exciton virial theorem value is not a
constant for either wires or wells. The purpose of this work is to investigate the scaling rule, if
any, for the donor binding energies versus Bohr radius, and the virial theorem for shallow donors
in quantum-sized semiconductor heterostructures, such as GaAs-Ga1_xAlxAs cylindrical quantum
wires or wells, both within the fractional-dimensional and variational approaches.

THEORETICAL FRAMEWORK

We consider a shallow donor at the position ii in a semiconductor GaAs-GalAlAs

heterostructure such as a QW or a cylindrical QWW, within the effective-mass and non-
degenerate-parabolic band approximations. The Hamiltonian is given by
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H = p e +V()
2m* elf_•,l +v,1) 1

where mn* is the conduction-band effective mass and e is the dielectric constant, which, for
simplicity,-are taken as the GaAs bulk values throughout the heterostructure [3]. V, (F) is the

confining potential. which is taken as Vh(i) = V,,(z) for QWs or Vh(j) = Vj,(p) for cylindrical

QWWs. In the following, we will limit ourselves to donors located at positions where cylindrical
symmetry is preserved, i.e., at any position in QWs or at the wire axis in QWWs, and will focus
on the impurity Is-like ground state. The eigenfunctions of (1) may be taken as

f,. Wi = f W iO, Wi), (2)

where f(e:) is the ground-state solution of (I) in the absence of the Coulomb interaction. In the
fractional-dimensional approach, one finds that, for a given state, the "shallow donor +
heterostructure" anisotropic system may be modeled by an effective isotropic hydrogenic system
in a fractional D-dimensional space [4], a problem which may be solved analytically, with the D
parameter chosen via the condition [5]

fJizh r,2 sin,0 0, W d9 d rh- = 0 (3)
0 I

where the operator W in eq. (3) includes the effects of anisotropy. In the above equation, 0E (r)

is the corresponding impurity eigenfunction, and , (and EF) are the exact cigenfunctions (and
eigenvalues) of the D-dimensional Hamiltonian. If one is concerned with the ground-state donor
binding energy, it follows [4] that

E, =- E, = 4R /(D - 1)2 (4)

.l'4
where R, 2= is the donor reduced Rydberg. If the ground-state wave function is chosen as

2etz 
2

= e" with A 21[a,(D - 1)], the fractional-dimensional parameter is given [5] by

D=1+2 a-a (5)

where a,, = h----e-, is the reduced Bohr radius, and we have followed Rossi et al [I] and Zhang
ni e"

and Mascarenhas [2] and defined a "quanturn-confined impurity Bohr radius" as
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a1  (6)

with coordinates taken with the origin at the impurity position. Notice that (5) provides a simple
relation between the fractional dimension of the effective isotropic medium and the localization
of the ground-state wave function through the donor Bohr radius (6). Also, it is straightforward
to demonstrate that (5) and (6) give the exact results corresponding to the 2D and 3D limits. One
then obtains [5] the hyperbolic dependence of the donor binding energy on the impurity Bohr
radius,

E- =R,, IJa = e (7)ka/ 1 2e a ,

and a virial theorem value of fl = 2 within the fractional-dimensional space approach, for donors
either in QWs or QWWs.

Alternatively, in the variational procedure, one may introduce a variational function for the
donor OE (r) envelope wave function, and minimize the impurity energy with respect to the

variational parameters [3]. Although one may choose a two- or three-parameter hydrogenic
variational wave function for a shallow donor in a QW, the comparison between results using the
fractional-dimensional space approach and the variational scheme is probably best illustrated
with the simplest one-parameter hydrogenic choice [31 for the variational wave function. We

choose therefore OE (r) =1s (r) = e-lb for the ground-state wave function, where A is a

variational parameter, and write

Eh()= e h-1222 - e2  (I- 1 (8)
E ea,(2) 2m* ea,(A) 1 1()

By imposing the 0, one obtains a transcendental equation for 2, and3J2

a,

fI () a, (9)

for the virial theorem value within the variational approach.

RESULTS AND DISCUSSION

In the following, we have used a GaAs conduction-band effective mass m* = 0.0665 too,
where mo is the free - electron mass, and a 60% (40%) rule for the conduction (valence) -
barrier potential with respect to the total band-gap offset, with the band gap discontinuity taken
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as AEg (eV) = 1.247 x, where x is the A] concentration. Results are presented with energies and
lengths expressed in reduced units of the impurity Rydberg (Ro) and radius (a.), respectively.

In Fig. l(a) we compare the theoretical fractional-dimensional calculations of the binding
energies for on-center donors in GaAs-Ga, 7AII.As QWs with the corresponding results using a
variational Is-like hydrogenic envelope wave function [3]. Results are also shown for an infinite-
barrier potential. Notice that the on-center donor binding energies of both fractional-dimensional
and variational calculations are in excellent agreement. Figs. 1(b) and (c) show the on-center
donor binding energy and corresponding virial theorem value f3 versus the quantum-confined
donor Bohr radius [see eq. (6)], calculated in the variational [3] and fractional-dimensional [5]
approaches, for GaAs-Ga1 ,AlAs QWs, both for x = 0.30, and infinite-barrier potentials. We
notice that the fractional-dimensional approach leads to the hyperbolic dependence of the donor
binding energy on the impurity Bohr radius, and to a virial theorem value of f = 2. In contrast,
within the variational procedure, the virial theorem value has a strong dependence on the donor
Bohr radius, and approaches the exact bulk value of 2 from above as the width of the well
approaches infinite, both in the case of infinite-confining and finite-barrier potentials. One
should point out that variational results for finite barriers may exhibit two different virial
theorem values for a given donor Bohr radius, as a donor radius may correspond to two well
widths. In the case of infinite-potential barrier in the variational scheme, the virial theorem value
also approaches the exact 2D value of 2 for vanishing QW width. The above variational results
for the virial theorem value in the case of shallow donors in QWs are quite similar to the results
for excitons reported by Zhang and Mascarenhas [2].

The fractional-dimensional and variational results for the binding energies of donors at the
axis of a cylindrical GaAs-Ga,.xAIAs wire are presented in Fig. 2(a). A comparison between
fractional-dimensional results and a donor variational calculation indicates good agreement for
the binding energies in the cases of moderate and large values of the wire radius. The on-axis
donor binding energy and virial theorem value are shown in Figs. 2(b) and (c) versus the
quantum-confined donor Bohr radius, calculated in the variational and fractional-dimensional
approaches, for both x = 0.30 and infinite-barrier potential GaAs-Ga1 _Al0 As QWWs. As before,
the fractional-dimensional approach leads to the hyperbolic dependence of the impurity binding
energy on the donor Bohr radius, and to a virial theorem value of fi = 2. As in the work on
excitons by Zhang and Mascarenhas [2], the virial theorem value, obtained within the variational
procedure, has a significant dependence on the donor Bohr radius, and approaches the exact bulk
value of 2 from above as the radius of the well approaches infinite, both in the case of infinite-
confining and finite-barrier potentials, similar to the results for donors in QWs in Fig. 1. Also, in
the case of infinite potential in the variational scheme, the virial theorem value approaches the
exact ID value of 2 for a vanishing QWW radius.

CONCLUSIONS

We have presented a study, within the fractional-dimensional and variational approaches, of
the virial theorem value and results for the scaling of the shallow-donor binding energies versus
donor Bohr radius in GaAs-(Ga,AI)As QW and QWW quantum-sized semiconductor
heterostructures. In the case of the fractional-dimensional space approach, if the 3D actual
anisotropic semiconductor heterostructure may be substituted by a firactional-dimensional
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Figure 1. On-center donor binding energies as functions of the well width (a) and quantum-
confined donor Bohr radius (b) in GaAs-Gaj_xAlxAs QWs, both for x = 0.30 and infinite-barrier
potentials. The corresponding virial theorem value is shown in (c). In (a) solid curves correspond
to fractional-dimensional results whereas dotted lines are calculated using a variational
procedure. In (b) and (c), x = 0.30 results using the variational - V or fractional-dimensional - FD
approaches are given as full curves, and dotted curves are in the cases of infinite-barrier
potentials. Open dots correspond to exact results. Energies and lengths are expressed in reduced
units of the impurity Rydberg (R.) and radius (a,), respectively.
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Figure 2. On-axis donor binding energies as functions of the wire radius (a) and quantum-
confined donor Bohr radius (b) in GaAs-GaMAlxAs cylindrical QWWs, both for x = 0.30 and
infinite-barrier potentials. The corresponding virial theorem value is shown in (c). In (a) solid
curves correspond to fractional-dimensional results whereas dotted lines are calculated using a
variational procedure. In (b) and (c), x = 0.30 results using the variational - V or fractional-
dimensional - FD approaches are given as full curves, whereas results for infinite-barrier
potentials are given by dotted curves. Energies and lengths are expressed in reduced units of the
impurity Rydberg (R.) and radius (a.), respectively.
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effective medium with a ground-state wave function given by a = e-X' with

2 = 2/[a,,(D -1)], the virial theorem value equals 2 and the scaling rule for the donor binding
energy versus Bohr radius is hyperbolic, both for GaAs-(Ga,Al)As QWs and QWWs. In contrast,
calculations within the variational scheme unambiguously show that the scaling of the donor
binding energies with Bohr radius is, in general, nonhyperbolic and that the virial theorem value
is nonconstant. Moreover, calculations for the donor binding energies versus QW widths or
QWW radii, within both the fractional-dimensional and variational approaches, result in
essentially the same binding energies with quite different virial theorem values or Bohr radii.
This indicates that any general conclusion based on a given virial theorem value or donor energy
versus Bohr radius scaling rule should be examined with due caution.
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