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Abstract. The linear stability analysis of the 1 = I diocotron perturbations in a single charged
plasma confined in a cylindrical Penning trap is critically revisited. Particular attention is devoted to
the instability due to the presence of stationary points in the radial profile of the azimuthal rotation
frequency. The asymptotic analysis of Smith and Rosenbluth [1] for the case of a single-bounded
plasma column (algebraic instability proportional to t

11 2
) is extended to the case of a cylindrical

Penning trap with an additional coaxial inner conductor, and it is shown that the algebraic instability
found in the case of a single-bounded plasma column becomes exponential at longer times. The
relevant linear growth rate is computed by a suitable inverse Laplace transform (contour integral in
the complex plane). The analytical results are compared with the numerical solution of the linearized
two-dimensional drift Poisson equations.

INTRODUCTION

The linear stability analysis of the 1 1 diocotron perturbations in a low density single
charged plasma, radially bounded by two cylindrical conductors held at fixed potential,
is critically reviewed. Using a model with a radial step density profile, Levy [2] showed
that the plasma is neutrally stable when it is in contact with one or both conductors, or if
the charge on the inner conductor is large enough. If the central conductor is absent, the
1 = I diocotron mode is neutrally stable, while lower I > 2 modes may be unstable. The

effect of a central conductor on the stability of an hollow plasma column has been also

studied experimentally [3].
Particular attention is devoted here to the instability due to the presence of one or

several stationary points in the radial profile of the azimuthal rotation frequency of the
plasma. The asymptotic analysis of Smith and Rosenbluth [1] for the case of a single-

bounded plasma column (instability proportional to t 1/2) is extended to include algebraic
instabilities growing as t", with 1/2 < x < 1. The asymptotic analysis is generalized to

the case of a trap with a coaxial cylindrical inner conductor, and it is shown that the
algebraic instability found in the previous case becomes exponential at longer times: the
relevant linear growth rate are computed. Finite length and finite Larmor radius effects
are neglected.
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FIGURE 1. Scheme of a cylindrical Pcnning trap. Left: without central conductor; Right: with central
conductor.

BASIC EQUATIONS

In the model, a one component plasma is assumed to be contained within two infinitely
long cylindrical conducting walls, of radii a and R, respectively. The external conductor
is grounded (see Fig. I). The case where the central conductor is absent is treated simply
by setting a = 0. The system is immersed in a static and uniform magnetic field B = B2,
directed along the axis of the trap. In the model considered here, the evolution of the
system is described by the two-dimensional drift Poisson equations [4], written in polar
coordinates (r, 0),

Yttyt +(V• ×vn).£,=O0, V2 p0= n. (I)

Adimensional quantities are used. The density, n, is normalized over an arbitrary ref-
erence density, hi; the lengths over the radius of the outer conductor, P = R (an explicit
notation for R is kept in the following); the frequencies over 6) = 47re 2

)i/mcoc, where
o) = -eB/mc (e and in being the charge and the mass of the particles, respectively,
and c the velocity of light in vacuo); the potential, (p, over ý = 4tehip2; and the electric
charge per unit length on the central conductor, Q, over Q = ltehp2 .

Linearizing Eqs. (1) for perturbations ••p = 01(rt)eilO and •n = nj(rt)ei"0 with a
given azimuthal number 1, yields the following second-order differential equation for
the potential amplitude 41 (see, e.g., Ref. [4]):

[a+ioz.:r)] [ I a a i--2ii,(r) =0;

1r -) Q

where nn(r) and G)E(r) are the unperturbed density and the unperturbed azimuthal
frequency of the plasma, respectively, and a prime denotes the radial derivative. Eq. (2)
has to be supplemented with the boundary conditions 1ýi(0) I < +,o, 01(R) = 0 in the case
without central conductor, and 01(a) = 0, 01(R) = 0 in the case with central conductor,
respectively.

318



In the following, the analysis is restricted to the case 1 = 1. The Laplace transforms
for the perturbed potential and density can be written in this case as

Op()= r[p+iE(r)lj 3(x( p~)_ dx; (3a)
Ir) 3 rp i r x[p+iE(X)]

n nr(r) = in'(r) h(x)-h(p) d
p+io)E(r) Jr x 3[p+i()E(x)]2 dx' (3b)

where

Lr) =aR x3p iEX]h(x)dx /fR dx
h(r)i x2nh(xO)dx; h(p)- 3 I(x)x 1 R3[p+iwE(X)]2. (4)

The inversion of the Laplace transforms, e.g., 01i(r,t) = f dP-" O(r)ePl, involves an
Br

integration in the complex plane along a Bromwich contour, Br, which goes to the right
of all the transform's singular points and branch cuts.

TRAP WITHOUT CENTRAL CONDUCTOR

The inverse Laplace transformation can be performed in a closed form if a = 0, recov-
ering the result of Ref. [1]:

0•1 (r't) =- r f [h(x)Ix'] [1 + ioE(r)t--iWE(x)t] e-iE(x)tdX; (5a)

ni (rt) = nj (r, O)eimE(r)t - itno(r) j[h(x)/x3 ]e-liE(x)t dx. (5b)

It is readily seen that an unstable perturbation can not grow faster than t, as the integrals
in Eqs. (5) are decreasing functions of time. An asymptotically non-decaying solution
can originate from the density jumps, from the two ends of the interval of integration in
Eqs. (5), or from the stationary points inside the same interval.

If n(r) is non-monotonic, 0E(r) may also be non-monotonic with its extrema being
the points of stationary phase for the integrand functions in Eqs. (5). If r = ro is a
nondegenerate stationary point for 0 E (o•(ro) = 0, o,(ro) # 0), then

[coErh~r ) [ io) ~~r~t . t,]n\o

1 v"2r0h [(E(r)--WE(ro)] H(ro - r) vexp -i(E(ro) t- in-lgn(E) , (6)
Nor) I rO 4

where H(x) is the Heaviside's step function. The perturbation grows in this case propor-
tionally to Vfi [11 (SR-instability).

In the presence of an inflection point, r,, of the WE profile, different situations may
occur, according to the value of (dE(r.)/o .(r.). If dYE(r,)/w('(r,) < 0, OE(r) has two

extrema at r±• = r, ± V/--2oE/c.. At large times, t >F IF- 1 , with r 8oE/9oE,
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FIGURE 2. Left: Smooth no profile (solid line) and corresponding (oE profile (dashed line), which give
rise to exponentially damping initial perturbations. Right: Amplitude of the perturbed potential, 10 1(,t),
vs. r and t.

these extrema contribute separately to 01, and the initial perturbation grows as vft. If
,J(r,) = 0, these points merge at r = r., and the perturbation grows proportionally to

t2/3:

Si2 ,,,( 1/3) rh(r [WE(r) - WoE(r,)]H(r, -r)t 2 /3 e-i(')WE. (7)

Finally, if ot (r,)/oW.. (r,) > 0, the extremum points move into the complex plane, while
0t grows algebraically according to Eq. (7) in the initial time evolution, t IF<1-, and
then decays exponentially at late times (this situation is illustrated in Fig. 2):

i )/2" rhr [(oE(r) - (oE(r*)]H(r* - r) \A exp[-ioI).t - rt]. (8)

The frequency of the "saturated" mode is 0E(R) (Levy's mode). In general, if the

WE profile presents a stationary point, r, of order m( o(.J)(r*) = 0 for j < in, and

CoE (r,) 7 0), the following asymptotic behavior of the perturbed potential is obtained:

2 121! /1
r (•)- t1 -11 ir I- [OE(r) - OE(r*)] H (r, - r) e-i rX)1 )m M

cos (nz +i 11 ( -- I sign(oEl (r,)) sin ( . (9)

For in = 2, this formula reduces to Eq. (6), and for in = 3 to Eq. (7).
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Finally, a linear growth of the amplitude of an initial perturbation is found if an
interval exists where (oE(r) is constant, and if this interval does not contain the whole
plasma column. This situation can be realized by means of a two-column plasma, where
the densities of the internal (0 < r < bo) and external (a, :< r < bl) columns are related
by no(bo)bo = no(aI)a I. In this case:

01 ; itr[OJE(r) -- 0E(al)]H(a I- r)e-iME(aI)t bj [h(x)/x3]dx. (10)

TRAP WITH CENTRAL CONDUCTOR

The SR-instability comes from the neighborhood of a nondegenerate stationary point
r0 of (OE. This instability can be interpreted as the contribution of the branching point
p = -i(OE(rO) in the complex p-plane. When a central conductor is present in the trap,
it results

A(P + iO(WE(rM))/r3 h(r0); (11)

h (P + i0oE(rO))/r3 + P(P)
ce-incsign[o0E(ro)]/41

.1(3) =(p) 2a2 [p+ iAmOEl[p+iOE(a)],

where AWE = no(a)/2 and 0oE(a) = Q/2a2 , respectively. The function 5(a) is two-
valued since it contains the rational power 3/2 of a = p+i(OE(ro). The "physical sheet"
of the Riemann surface, arg[G] E (-nt, t), corresponds to the complex a-plane with the
branch cut a E (--,0]. The effect of the central conductor turns out to be negligible at
small times, t 1< T Io1I1/33, - 4 /3 ,2.a,-4/3 while at larger times, t > T, the algebraic
SR-instability disappears. The inverse Laplace transform can be performed (asymp-
totically for t -4 -c), by means of a suitable deformation of the inversion (Bromwich)
contour inside the "physical sheet". In particular, an exponential instability is found if
[OE(rO) - AO3E][moE(ro) - o)E(a)] > 0, with a growth rate (in the limit a -- 0)

31/2it2/3 a4/ 3

"Y 22/ 3 r2o 1 i/3 [0E(rO) -0CE(a)]2[OE(rO) -AOE] 2 /3 • (12)

Typical results of the analysis and the numerical simulations of Eqs. (2) in the case with
central conductor are shown in Figs. 3-4.

CONCLUSIONS

The existence of 1 = 1 diocotron instabilities in a charged plasma confined in a cylin-
drical Penning trap, growing with time faster than the SR-instability (-c to,, with 1/2 <
a < 1), has been pointed out. In addition, it has been shown that the presence of an inner
conductor (even very thin and uncharged) can transform the algebraic instability into an
exponential one at late times. A criterion for the occurrence of the exponential instability
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FIGURE 3. Left: n0(r) (solid line) and WE(r) (dashed line) profiles, which determine a SR algebraic

instability [1]: no = [I + (r/,),2 /A] [1 - (I/,J,)2]2 for r < r, no = 0 for r > r,, with A = 0.25, r", = 0.6.
Center: Amplitude of the perturbed potential. I0i j(rt), vs. r and t. Right: Amplitude of the perturbed
potential, 10 1(rt), vs. r and t, for the density profile truncated at the radius a = 0.05 of the central
conductor. Q corresponds to the total charge of the particles lying within r = 0.05 in the previous case.
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FIGURE 4. Left: Generalized parabolic density profile (solid line) used in the computations: io()
[I - (r- r-,)2/r,] 2 for Ir - r, I < r1, and ,,. = 0 otherwise (with r,. = 0.5 and rp = 0.1) and Wo profiles
(dotted lines), plotted for a = 0. 1 and different values of Q. Right: Example of frequency spectrum, for
Q = 0 and a = 0.2, 0.1, 0.05, 0.025, and 0.001. The continuum spectrum lies on the Re[o)] axis from 0 to
WE(ro). For a given a, there are two complex conjugate discrete frequencies, which converge to wo.:(roh) as
a -4 0. Stable solutions (Ihn[o] < 0) do not belong to the "physical" sheet of the Riemann surface,

and the growth rate have been computed analytically in the limit of thin inner conduc-
tor. This work has been supported by the Italian Ministry of Education and Scientific
Research.
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