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Magnetic Shear Stabilization of

Diocotron Instability

S. Kondoh, T. Tatsuno, and Z. Yoshida

Graduate School of Frontier Sciences, University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Abstract. The diocotron instability in a magnetized non-neutral plasma is
a close cousin of the Kelvin-Helmholtz instability. A sheared magnetic field
brings about coupling between the diocotron modes and the Langmuir waves that
propagate along the magnetic field. Motion of electrons parallel to the magnetic
field cancels the electric charge produced by the diocotron modes, resulting in
stabilization of the diocotron instability.

I INTRODUCTION

Recently a variety of new concepts on non-neutral plasma confinement
has been proposed [1-3], which significantly differ from the conventional Pen-
ning/Malmberg trap [4]. The Prototype Ring Trap (Proto-RT) experiment
[1,5] is aimed at pure magnetic confinement of a toroidal non-neutral plasma
that is not in a rigid-rotating thermal equilibrium state. In such a system,
the plasma flow is generally sheared, and the diocotron instability [6] can be
destabilized. Application of magnetic shear is expected to be most effective
to stabilize the electrostatic modes. However, exact stability analysis has not
been completed, except for the special case of an electron beam with a rela-
tivistic speed [7].

The physical mechanism of the diocotron instability is explained as follows
[8] (see Fig. 1): When a non-neutral slab plasma has a finite thickness, a
perturbation on one of the two plasma surfaces produces surface charges. The
resulting perturbed electric field yields an E x B flow in the plasma, and the
opposite surface is also perturbed. The motion of the opposite surface brings
about a reciprocal perturbation, and the waves on the two surfaces couple with
each other. Under certain conditions, this coupling yields a positive feedback,
and the diocotron instability occurs.

When a non-neutral plasma is confined in a uniform magnetic field, the
diocotron modes propagating in the- perpendicular direction to the magnetic
field are independent of any modes that propagate in the parallel direction.
However, if the magnetic field has a shear (see Fig. 2), the wave vector may
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FIGURE 1. Physical picture of diocotron modes in a uniform magnetic field. Perturbation
on one of the two plasma surfaces produces the surface charge and causes the electrostatic
field perturbation. This perturbed electric field shakes the body of the plasma itself through
E x B drift, and the other surface is also perturbed. The perturbation on the latter surface
in turn shakes the former one in the same way. Thus, the waves on the two surfaces couple
with each other. Under certain conditions, the diocotron modes can be unstable.

B t<Y
-++ B

FIGURE 2. Physical picture of stabilizing effect of a sheared magnetic field on diocotron
modes. The wave vector almost always has a local parallel component, and the diocotron
modes cannot be independent of the parallel modes, such as the Langmuir wave or the
plasma oscillation. Therefore, a coupling between them is caused. In a cold non-neutral
plasma, the surface charge perturbation produced by the diocotron modes is canceled by
the parallel motion of charged particles. Thus, the diocotron instability is stabilized by the

sheared magnetic field.

have a local parallel component k11(x), and the diocotron modes interact with
the parallel modes, such as the Langmuir wave or the plasma oscillation. In
a cold non-neutral plasma, the surface charge perturbation produced by the
diocotron modes is short-circuited by the parallel motion of charged particles,
if the diocotron frequency WD is much smaller than the plasma frequency
wp, i.e., when a low density plasma embedded in a strong magnetic field.
Therefore, we expect that the diocotron instability is stabilized in a sheared
magnetic field.

In this paper, we consider a slab plasma with a flat-top density profile
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and show the stabilizing effect of magnetic shear analytically. The diocotron
instability is formally equivalent to the Kelvin-Helmholtz instabilities in fluids
and plasmas [9]. The magnetic shear stabilization of these instabilities is of
the common interest and has a variety of applications (see Sec. IV).

II EIGENEQUATION FOR DIOCOTRON MODES

IN A SHEARED MAGNETIC FIELD

A Slab plasma model in a sheared magnetic field

We consider a slab electron plasma embedded in a sheared magnetic field
(see Fig. 2). The plasma has a finite thickness 2A in the x-direction. We
assume that all equilibrium quantities are functions of only x. We consider a
sheared magnetic field such as

B = (O, B,(x),B,), (1)

where B, is a constant. Since a non-neutral plasma has a self-electric field,
there is a stationary flow that is approximately equivalent to the E x B drift
for low densities.

The governing equations are

Ona-n+ v Vn + nV. v = 0, (2)
at

o-7 + (V. -V)v 1 2 (E + v x B), (3)

V 2q5 -n, (4)

where n is normalized by the typical electron density no(O), t by the inverse of
the diocotron frequency wD E0oB/eno(O) (Eo is the vacuum dielectric con-
stant and e is the elementary electric charge), the spatial coordinates x, y, z
by the half thickness of the slab plasma A, v by the mean flow velocity at
the plasma surface Ivo(1)1, B by the axial magnetic field Bý, E by the mean
electric field at the plasma surface IE(1)I, s Wp/Wc = WD/Wp is a dimen-
sionless parameter, and E = -Vo. Since we consider a low-density plasma
in a strong axial magnetic field, we may assume s <K 1. In this limit, we can
replace Eq. (3) with

-V¢xB(x)

O--t + (v - V)v = 12V 110, (6)
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where B(x) = VBY(x) 2 + B1. Linearizing Eqs. (2), (5), and (6), we finally

obtain [10]

(d 2 0, 2 1 d (kLno' nok1 (7S- •• J .-k +~ .o~d 01+ -1-,6 -',01_)'• 0, (7)
dx2od 2W _L)kdX2  k2  Li + k k ýB } +s 2( - kjvo)

where we have Fourier-transformed all perturbed variables qI(x, y, z, 1) as

'(x, y, z, t) = To(x) + %I'j(x)exp[i(wt - kyy - k~z)]. (8)

III STABILIZING EFFECT DUE TO PARALLEL
MOTION

A Non-resonant frequency regime

First, we show that the diocotron modes are stabilized (wi = 0) for wave
numbers without resonance between the phase velocity and the plasma flow,
that is, wr - klv 0o $ 0 for all x. Multiplying Eq. (7) by 0" and integrating it
over (-oc,oo), we obtain from the imaginary part

I d ____) 2nok'(wr - kj-v-o)
Lo + [I11 11 2 dx =0. (9)

Here we used the boundary condition

01(+o0) = 0. (10)

Since s 2 << 1 and Lwr - k $vio # 0 at any point in the plasma region, we obtain
oi = 0, which means stability. This mathematical treatment is same as the
standard Rayleigh's analysis [11].

B Dispersion relation with resonances

If the plasma has a resonant point, the analysis in Sec. III A does not apply
to check whether the eigenvalues w for Eq. (7) are real or not. In this case,
we need to solve Eq. (7) directly. The eigenfunction determined by Eq. (7)
is oscillatory, because the sign of the last term, which we assumed to be very
large (s < 1), is positive. If w is not real, the real and imaginary parts of the
eigenfunction have a relative phase angle of about 7r/2. When we consider a
density profile with a sharp boundary, we have to connect both the real and
imaginary parts of the eigenfunction at the plasma surfaces using the same
boundary condiotion. If both of them have a different phase angle, this process
fails, which implies that w must be real.
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The essential characteristic of this eigenvalue problem is well understood by
the following simplified model. First, we neglect the second term k20 1 in the
bracket of the first term of Eq. (7) in the plasma region (-1, 1), since it is
much smaller than the last term when no - 1. We also assume that k±no/B
jumps at x = ±1 and its variation is negligible anywhere else, i.e.

d--• = f W)[S(x + 1) - S(x - 1)], (11)

where f(x) is a given finite function. Furthermore, we assume

no(x)kl(x) 2  a 2 =const. > 1, (12)

5
2

k±(x)vjo(x) = x. (13)

Under these assumptions, we can solve Eq. (7) analytically, and the dispersion
relation is given by [10]

[(a + kwc) 2 - k2w~ + (k + - + f(-1)f(1)- (k + (f(-1) + f(1))

+kwr(f(-1) - f(1)) + i(a + kwi)(f(--1) - f(1) - 2kwr)] (w + 1)2ai
+k 2r2W21) +11)2

- [(a - kwi) 2 - k2w r+ (k + 22+ f(-1)f(1)-(k-+ 2+) (f(-1) + f(1))

+kwr(f(-1) - f(1)) - i(a - kwi)(f(-1) - f(1) - 2kwr)] (LO - 1)2ai, (14)

where w = wr+iwoi. We can show that w is real for Eq. (15). where wr = Re w
and wi =Im w. Taking the absolute number of Eq. (15) gives

JA11 War + --- I-]j
I A21=exp [a arg()O j (15)

where

A1 = (a + kwi)2 - k2wr + (k + f(-1)f(1) - (k + (f(-1) + f(1))

+kwr(f(-1) - f(1)) + i(a + kwi)(f(-1) - f(1) - 2kwor), (16)

A2 = (a - kw) - k2 r+ (k + 1)2+ f(-1)f(1)- (k + 2)(f(-1) + f(1))

+kLvr(f (-1) - f(1)) - i(a - kwi)(f (-1) - f(1) - 2kwr). (17)

If wi > 0, the left-hand side of Eq. (16) is greater than unity, while the right-
hand side is less than unity. Therefore, wi > 0 cannot be satisfied. If wi < 0,
the left-hand side of Eq. (16) is less than unity, while the right-hand side is
greater than unity. Therefore, wi < 0 cannot be satisfied. Thus wl = 0, which
means stability. If wci • 0, the eigenfunctions of the three regions 01, 011, and
011, cannot be connected properly at x = ±1.
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IV SUMMARY

We have shown that the magnetic shear has a strong stabilizing effect on
the diocotron instability. The fluid motion parallel to the magnetic field short-
circuits the charge perturbation of the diocotron modes. The scaling param-
eter is s wD/lwp. Since the time scale of the parallel motion is ,- w , the
condition s < 1 enables the parallel motion of the plasma to cancel the per-
turbed charge sufficiently. Typical non-neutral plasmas in laboratories satisfy
this condition.

Mathematically the last term of the eigenequation (7) prohibits non-real
eigenvalues, because the last term makes the eigenfunction oscillatory. If
w ý 1?, the relative phase angle between the real and imaginary parts of
the eigenfunction is about 7r/2. This phase angle disables both the real and
imaginary parts of the eigenfunction to be connected properly at the plasma
surfaces.

We note that our analysis is based on a modal approach which, however,
may not be complete for non-Hermitian systems [12-14]. There remains a
possibility of secular algebraic behavior, although we have shown that there are
no exponentially unstable modes. This problem will be discussed elsewhere.
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