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SLINGATRON: A HIGH VELOCITY RAPID FIRE SLING

D. A. Tidman

Advanced Launch Corporation, 6801 Benjamin Street, McLean, VA 22101-1576
datidman@starpower. net

The mechanics of a spiral slingatron mass accelerator is discussed,
together with some experiments to measure the sliding friction and mass
loss of projectiles in such a machine. The potential utility of this machine
for defense applications is also discussed, including examples of 1 kg and
50 kg projectiles launched at 3 kmi/sec. The device appears capable of high
launch velocity with repetitive fire without over-heating the steel guide
tube, since hot high-pressure gas is not used. It could derive power from a
turbine that burns kerosene and it fires projectiles without propellant
cartridges. Angular dispersion of emerging projectiles can be minimized,
but would be larger than for conventional guns. However, projectiles that
are smart enough to reduce dispersion of the projectile stream would
suffice for many applications. Smart projectiles would also be needed for
any gun capable of the long-range missions available due to high launch
speed.

INTRODUCTION

A mechanical mass accelerator concept called a slingatron has been proposed by
the author [1-5] and computer models developed by Tidman [2], Cooper et al [6], and
Bundy et al [7] for the dynamics of both spiral and circular versions of this machine.
Here we first summarize the dynamics. A new approach to the mechanics is then
discussed that is useful for the potential defense applications of a spiral slingatron in
which a projectile (or stream of projectiles) could be accelerated to high velocity.

The device consists of a spiral steel tube (Fig. 1) mounted on swing arms
distributed along it so that the entire tube can be propelled so that it gyrates around a
small circle of radius r with a constant gyration frequency f cps. The machine transfers
stored inertial energy directly into projectile kinetic energy with no intermediate steps,
and work is done on a projectile sliding through the spiral because the accelerator tube is
continually pulled inward at the projectile location against the centrifugal force of the
projectile. The accelerating force experienced by the projectile is an example of a
coriolis force and is proportional to the projectile mass. As the projectile swings out
around the spiral into turns of increasing radius R, it also maintains phase stability with
the small-radius gyration of the entire tube. This phase locking enables it to move out
around the spiral turns with the same frequency f so that its increasing velocity V is
approximately equal to 21rRf. The device can be viewed as a mass cyclotron [2].
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The dynamics is similar (but not identical) to whirling a mass around at the end of a
string as in a conventional sling, but with the string growing in length so that the whirling
frequency, f cps, is constant. However, there is a basic difference in that there is no
string to break under tensile stress in the slingatron. Instead, the guide tube can contain
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GYRATION SENSE
FIGURE 1. A Spiral Tube mounted on Distributed Swing Arms (not shown) that propel the entire spiral
around a Small Gyration Circle of radius r with a Constant Frequency f cps and the sense shown.
Projectiles fed into the Spiral Entrance are pushed forward by the Closed Breech and accelerate through
with a Stable Relative Phase Angle 0 and Increasing Speed V = 2tRf.

the projectile to much higher speeds since the mechanical impulse delivered per unit
length, mV/R =_ 27rmf, is approximately constant along the spiral. The tube wall
thickness can thus remain constant along the spiral.

Note that if one treats the tube as an elastic beam supported at intervals on swing
arms, the driving force Per unit length in the beam deflection equation swept by a point
mass m would be (mV /R)6(x - Vt) = ltmf8(t - x/V) -- Jtmf5(t) as V ---> -, i.e., a

uniform impulse for segments traversed with V >> transverse wave speeds. The projectile
wave drag due to the elastic response of the track is also small for all speeds.

Experimentally, we have repeatedly fired 0.738 gram lexan projectiles at 5.2
km/sec into curved 1020 steel tube (OD = 0.5, ID = 0.3, wall thickness of 0.lin.) and a
radius of curvature R = 30 inches, so that a force of 2.7 tons sweeps around the tube with
a contact bearing pressure of 1.37 kbars, and with no discernable effect (except to slightly
smooth the tube asperities). A static force of this magnitude would permanently deform
the tube.

For most defense slingatrons a single conventional motor could be used to propel
the gyration, and for larger systems distributed motors could be used to swing the spiral
around its gyration circle and continuously supply inertial energy globally to the spiral
for extraction by an ongoing stream of projectiles passing through the spiral. The
launcher could be operated as a rapid-fire device with a maximum shot frequency equal
to the gyration frequency f (assuming the prime power is available), and for a given
design its system mass is approximately proportional to mV 2, [5].
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No gun injector is needed. A projectile inserted into the spiral entrance with the
breech closed behind it will accelerate through the spiral. It will acquire its initial speed
when the tube is moving forward at the projectile location, so that the projectile initial
speed (acquired from the breech block) is the same as the gyration speed v = 27Crf. In this
case it is also necessary for the first turn of the spiral to have a radius of curvature that is
no more than a few times the gyration radius, and an interior diameter slightly larger than
the projectile diameter so that the projectile can negotiate the first turn. A mechanical
feed of projectiles into the entrance can then maintain the supply of projectiles.

Note also that the absence of hot propellant gas in the guide tube allows a higher
velocity, projectile mass, and fire rate, than conventional guns without overheating the
guide tube. A slingatron also has no appreciable muzzle blast or EMP, other than what
might arise from the drive motor. Although the spiral guide tube is long, it could be
constructed from segments with tapered entrances at the connections. The machine is not
sensitive to the exact shape of the spiral, which could approximate an Archimedes spiral.

The two basic issues involved in construction of a slingatron are the sliding friction
coefficient of the projectile (with its attendant mass loss), and implementation of the
mechanical system needed to propel the gyration.

APPROXIMATE RELATIONSHIPS FOR THE DYNAMICS

The approximate equations listed here are useful for guideline purposes as a
supplement to the computer models based on more exact equations. An approximate
equation of motion for the projectile in a spiral sling can be obtained, Fig. 1, by equating
the rate of energy gain for the projectile, (d/dt)(0.5mV2), to the power used to pull against
the projectile centrifugal force (mV 2/R)vsinO, minus the power dissipated by the
projectile sliding friction, RmV 3/R. Note, all three of these powers neglect higher order
terms in the small quantities r, v, and [t, and for this discussion we also assume that the
projectile mass m is constant. The result is

dV/dt -= (VZ/R)(vV"1 sinO - pt), (1)

where R is the guide tube radius of curvature at the projectile location, V the projectile
speed in the spiral tube, v the constant gyration speed (assumed << V), and 0 is the phase
angle between the vectors v and V. It is also assumed that projectile drag due to residual
gas in the guide tube is negligible, so that Rt is simply the sliding friction coefficient. We
also consider only spirals for which the gap between neighboring turns is a constant.

We see from equation 1 that the key to achieving a high projectile velocity is to
mechanically implement a high gyration speed v, and for the projectile to have a small
coefficient of sliding friction and to lose only a moderate amount of its mass to supply the
gas film on which it slides.

When the exact equations for the dynamics are solved numerically, one finds that
for most of the range 0 < 0 < rt/2, the projectile is stably trapped in a traveling potential
well and advances around the spiral turns with an angular frequency V/R approximately
equal to v/r = 2tf, i.e., acceleration occurs. Provided the friction term .g remains smaller
than vsin0/V (because .g is decreasing with increasing V), the angle 0 undergoes only
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small oscillations about (and a small cumulative displacement in) its stable value to
accommodate changes in the relative magnitudes of the coriolis and friction terms. Phase
locking occurs, Fig. 1, because if a perturbation causes the projectile to move too fast its
relative phase 0 decreases and the gyration velocity component perpendicular to the tube
at the projectile location decreases (as does the rate at which work is done against its
centrifugal force) and the projectile falls back, and conversely if it moves too slowly its
relative phase 0 increases so the projectile experiences a larger accelerating force and
catches up. Computer models and analysis show that friction damps oscillations about the
stable relative phase as the projectile advances through the spiral.

As long as this situation prevails, and acceleration continues, it suffices to assume

V/R = 2itf = v/r. (2)

For a spiral designed with constant gaps AR between its turns, the velocity gain per turn,
AV, is also approximately constant, in which case

AV _ 2nr(vsin0 - gV), AR =_ 27r(rsin0 - gR), (3)

and the relative phase 0 changes slightly to accommodate the change in R. For example,
for a gyration speed v = 200 m/sec and 0 = nt/3 with m constant and friction negligible,
the gain in velocity per turn would be AV _ 1 km/sec. A more complete list of
approximate formulas for the case m = constant has been given earlier [5], and exact
equations and computer models for the dynamics in references [2,6,7] with [6] including
discussion of projectile mass loss.

Finally note that the guide tube has a radius of curvature R that goes from Rin for
the inner turn to Rut for the outermost turn. If the projectile consisted of a perfectly rigid
cylinder of length lp, it would be supported in the tube on its two ends with its mid-
section above the tube surface a height 8h given approximately by 8h/lp = lp/8R << 1.
However, 8h becomes sufficiently small after passing through the first 1 or 2 turns, and
the centrifugal force sufficiently large, that projectile elasticity provides the small amount
of flexure (well below its elastic limit) needed to push it into tight contact with the tube
along the projectile length. As the projectile travels farther out through the spiral its
flexure decreases as R increases, and could be reduced to zero at exit by gradually
straightening out a segment of tube and bringing its ID down to fit the projectile diameter
just before the exit.

MECHANICAL DESIGN

The slingatron is subjected to two kinds of stress, Harris [8] and Tapley [9], namely

quasi-static stresses due to gyration and a traveling impulse due to the projectile.
Impulsive stresses can be treated approximately using an energy method, or by using
detailed codes. In this section we briefly discuss only the gyration machinery and leave a
safety margin so that a range of applicability that includes the traveling impulse of the
projectile could be experimentally determined.
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In order to swing the entire spiral around its gyration circle of radius r, the guide
tube is attached to swing arms via clamps that turn on tapered roller bearings as
shown in Fig. 2. These bearings allow the entire spiral to roll around its gyration circle
while keeping its orientation the same, i.e., it gyrates but does not spin. The swing arms
could be oblique to the gyration plane of the spiral tube, which allows them to be spaced
more closely along the tube without mutual collision occurring, which in turn allows a
higher swing speed without shear of the guide tube. Close packing of the clamps also
avoids resonance between the gyration frequency f and transverse elastic vibrations of the
tube segments. For example in Fig. 2 they are shown spaced so that the tube segment
length between the centers of adjacent clamps is Lsg = r. For early experiments however,
it might be simpler to swing the arms in a plane with Lscg 1.5r.

CLAMP GUIDE TUBE/ /

FRAME

FIGURE 2. Distributed Swing Arms are shown Oblique to the Spiral Plane for Close Packing along the
Guide Tube for Maximum Swing Speed. Arms could alternatively be deployed both above and below the
guide tube. The arms have a cross-sectional area A that is larger at the frame (they are wider plates going
into the page) and A decreases along the arm toward the end that clamps to the tube.
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Swing Arms and the Potential for High Gyration and Projectile Speeds

We consider the case in which the arms in Fig. 2 swing in a plane, i.e., oX = 0, which
can also be viewed as an approximation for long swing arms with a small finite value for
oa. The arms then experience tensile stress that remains approximately parallel to a swing
arm as it swings around the gyration circle. If we choose to use 4340 (Q&T, 315C) steel
for the arm, a design strength of T = 120,000 psi can be assumed, which is
approximately its fatigue endurance limit for cycled stress (even though this stress is not
cycled). This allows some added strength for the traveling impulse delivered by the
projectile sweeping around the spiral.

If we design the arm with a cross-sectional area A(r) that decreases going away from
the frame so that its tensile stress T is constant in the arm, i.e., there is no parasitic mass
being carried in the arm, we find the result A(r) = Aoexp(-2r 2pfer2/T), where p is the steel
density and Ao the cross-section at the frame. The swing speed is then

v = 465[ln(Ao/A)] 1/2 meters/sec, (4)

and the mass mioad that can be carried at the end of the arm (consisting of the tube
segment, clamp, bearings, and steel to retain the bearings) is given by mIoad = AT/(47r2 rf).

However, the clamps and guide tube experience stresses that are both cycled and in
the shear direction, so that more complicated geometrical factors are involved in their
stress distributions. For these components we choose a design strength S = 60,000 psi
for 4340 steel.

Consider the maximum average shear stress at the clamped ends of a tube segment
of length (Lseg ---Lciamp) between clamps of length Lclamp and density p propelled around a
circle of radius r with a frequency f cps. This stress is 27t 2f pr(Lseg -- Lclamp) so that the
maximum speed with which the tube segment can swing around is,

v(max) = (2SgEr/p(Lscg -,clamp)) 0
"
5 = 320(r/(Lseg - Lamp)) 0

"
5 meters/sec, (5)

where we used gE = 386 in/sec2 , p = 0.289 lbs/in3, and could allow the clamp to be
tapered and extend a length Lclamp along the tube for tube support so that the tube segment
effective length shown in Fig. 2 is reduced.

In summary we see that very high swing speeds are possible. For example for v =
300 m/s the projectile velocity gain per spiral turn follows from (3) as AV = 1.6 k/s/turn,
neglecting friction and assuming a phase locked angle 0 = 7t/3. Conceivably a future
machine using advanced materials (in a reduced pressure environment) might achieve a
swing speed of v = I km/sec, in which case AV = 5.4 km/sec/turn, i.e., V = 21 km/sec in
four turns! But a first-generation machine is likely to operate in the range v - 200 m/s.

There will be some binding of the motion due to clamping of the tube at multiple
locations, but as the spiral gains speed the centrifugal forces rapidly become dominant as
the tube pulls outward against the swing arms, as was found in a small machine [2].
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Reciprocating Machinery for Synchronous Drive

Consider first the case of a single swing arm with its shaft bearing anchored in a
drive plate as shown in Figure 3(a). If the drive plate is propelled in a small radius

circular motion, energy can be pumped into the swing arm rotational motion. This swing
arm motion can be stably phase-locked with the drive plate motion just as for a
conventional sling (in which ones hand replaces the plate) or for a projectile accelerating
in a gyrating spiral as discussed earlier.

Thus if a number of such swing arms were anchored in a drive plate as in Figure 3(b),
they could all be synchronously accelerated (once started) by a small-amplitude circular
motion of the drive plate, regardless of possibly differing masses and swing arm lengths.
This phase stability allows a complete spiral guide tube, clamped by distributed swing
arms as in Figure 3(c), to be accelerated up to a high gyration speed while maintaining

(a) (b) (c)
DRIVE
PLATE

0 ©
DRIVE SWING
PLATE ARM PROJECTILE

FIGURE 3. Phase Stability maintains Synchronization of the Swing Arms propelled by a Small-
Amplitude Circular Motion of a Drive Plate. The Plate Motion is the same as one makes by hand in
whirling a Conventional Sling.

synchronization along the guide tube length. No other provision for synchronization
between the arms is needed. Guide tube stiffness suffices to start the motion of the spiral
in a synchronized state, and phase locking maintains it thereafter.

Another way to view this is to regard Figure 3(a) as simply an example of a small
mass orbiting about a larger mass, and tied together by a swing arm. Assume for the
moment that the system is not being driven and that the drive plate is confined to slide in
a plane with frictionless bearings at its four corners. These two masses then cycle around
each other in a plane, and the end of the swing arm moves around a circle of radius r and
the heavier plate moves around a smaller circle of radius 8r. Note that these radii are
independent of the gyration speed. Also, although the centrifugal forces can become
large, they are balanced and distributed internally in the coupled system, just as for a top
spinning about its center of mass.

Figures 4 and 5 show an example utilizing this drive principle in which a single
automobile engine is used to power the small-amplitude drive plate motion. The drive
plate is captured at its four corners by bearings that constrain its motion to a horizontal
plane. This restraint involves a relatively small oscillating vertical force (moment) due to
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the fact that the drive plate and the guide tube cycle in planes that are slightly displaced
from each other. Two camshafts propel the circular motion of the drive plate but do not
experience the large internal centrifugal forces provided they push the drive plate around
a circle of radius equal to the natural cycling radius of the drive plate.

The system is essentially a two-stage sling. The cams at the ends of the two
vertical shafts in Fig 5 propel the drive plate around a small circle, and the drive plate in
turn slings the spiral around a larger circle, and the spiral slings the projectile around and
even larger radius path with very high speed. All three of these motions occur at the
same frequency but with ascending velocities, and the sling motions are phase stable.
Also, little energy would be stored in the drive plate motion.

FIGURE 4. Concept for a 1.5-Turn Spiral Experiment Powered by an Automobile Engine. Two Vertical
Camshafts under the plate power the plate motion and are shown in Figure 7. A small Clip of Cartridges is
shown for supplying a Short Burst of Projectiles. The Drive Plate could have holes to make it lighter.
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FIGURE 5. The same system as Figure 6 but with the Drive Plate removed to show the Motor Shaft
passing through two Gear Boxes with their Vertical Camshafts that propel the Drive Plate.

Role of Air Drag

The gyrating components consisting of the swing-arms, guide tube, clamps, etc,
experience aerodynamic drag as they swing around the gyration circle at speed v. In
addition, the projectile will snowplow air (and in rapid fire cases also bearing gas) in the
guide tube, but this could be vented through slots on the inner side of the curved tube as
shown in the table top machine in Fig. 4 of Ref. 2.

For a rapid-fire system the power inputs required to drive the system typically have
relative magnitudes (Power to Maintain Projectile KE Stream) > (Aerodynamic Swing-
Drag Power) > (Roller Bearing Friction Power of Drive Modules). This assumes a drag
coefficient CD - 1 for the arms, clamps, and guide tube, and also assumes that the fire
rate is > 0.1 f. Although one could reduce the swing drag by streamlining the design of
the gyrating components to reduce CD, this might not be worth doing for the case of a
rapid-fire system since the prime power input required is in any case dominated by the
kinetic energy power of the projectile stream.

For spirals designed for extremely high projectile velocity (e.g., physics
experiments) one could eliminate air drag by enclosing the entire system in a reduced-
pressure environment. These involve long tapered swing arms with high swing speeds v.
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Figure 6. Layout of the Sliding Friction and Mass Loss Experiment.

SLIDING FRICTION AND MASS LOSS EXPERIMENTS

Here we give a brief summary of experiments described more fully in Ref 10.
Figure 6 shows the layout of the experiment used to obtain data for the projectile velocity
loss and mass loss due to friction up to - 4 km/sec. It consists of a 2-stage light gas gun
of small bore size, namely 0.27 inches, that fired lexan projectiles of mass 0.738 grams
into evacuated semicircular guide tubes of various radii, after which the projectile came
to rest in a 12-turn ring that functioned as a soft catch.

The laser triplets located at the input and output ends of the semicircular guide tube
provided a measurement of the projectile velocity Vi, going into the curve, and Vout
leaving the curve. As the projectile passes through the semicircle it is pushed against the
outer wall of the tube which results in a frictional force -gmV2/R. In Fig.7 we plot data
for the quantity ic-lln(Vin/Vout), as a function of the average velocity V = 0.5(Vi. + Vout)
around the semicircle, and in all cases the velocity loss Vin - Vout was small compared
with Vin. The relationship of 7c-1ln(Vin/Vout) to lt follows from equation 1 (with v = 0) but
generalized to include a drag term due to bearing gas accumulated on the projectile nose,
and also to allow for projectile mass loss. Converting the time derivative d/dt to Vd/dx,
and integrating along the projectile path around the semi-circle then gives,

71-lln(Vin/Vou,) = g - (27t)-lln(min/mout) + 0.257itd 2R<Pnse/(mV 2)> , (6)

where the subscripts in and out indicate the projectile velocity or mass either entering
or leaving the semicircular tube section, d is the projectile diameter, R the radius of the
semicircular tube, Pnose the reverse pressure from the dusty gas mass that accumulates on
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Coriolis 0 D = 60.8 in. (NASA/ARL)
0.08 v =200 m/s D = 33.8 in.

D• = 15.3 in.
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FIGURE 7. Velocity Slowing Data for 0.738 gram lexan Projectiles fired through a Semicircular Arc of
Steel Tube for several values of the Arc Diameter D = 2R and Injected Velocities Vi, The Relationship of
the Quantity Plotted to the Friction Coefficient is given by equation 6.

Mass Lost pcr Unit Contact Area ,
in Sliding to Rest from V
(minitial - mninai)/Acont•,t gnVcmn Lexan Projectiles

020 H"0.738 gm Breakup

0.10 -

0l5

o . i I i I I I tI I

I 2 3 4 5
Vi, kmnlsec

FIGURE 8. Mass Loss Data for 0.738 gram Lexan Projectiles that Slide to Rest in a Multi-Turn Soft
Catch . For Vi, = 3.5 km/sec about 50% of the 0.738 gram Projectile had Ablated Away, and above 4
km/sec the Projectiles Broke Up so data could not be obtained. For a Slingatron accelerating Identical
Projectiles with a Net Force cz times the Frictional Drag. one expects < a-' times the above loss.
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the projectile nose, and <> represents an average value of the argument integrated around
the semicircle. The left side of equation 6 is the quantity plotted in Figure 7, and it is
only equal to the friction coefficient in the limit that there is zero ablated mass from the
projectile and also zero snowplowed dusty gas accumulated on the projectile nose.
Figure 8 shows the mass loss of projectiles that were recovered from the soft catch.

Measurement of the asperity heights and microscopic examination showed that after
repeated traversals by lexan projectiles up to - 5 km/sec, the track had become slightly
smoother and harder, but use of a single 2.4 km/sec Al projectile resulted in shallow
gouges [ 11].

POTENTIAL DEFENSE APPLICATIONS

Although the slingatron concept is in the design and computer-modeling phase, we
note that it would have several advantages if it works as theorized. First, it is a simple
mechanical device that does not involve a flow of high temperature high-pressure gas in
the guide tube. The result (from the thermal calculations below) is that it appears capable
of launching large mass projectiles at high velocity and high fire rates without
overheating the guide tube, and without muzzle blast or EMP except from the drive
motor.

Second, the accelerating coriolis force continues to provide projectile acceleration at
high speeds, provided the sliding friction coefficient continues to decrease at least as 1/V
with increasing velocity. This force is experienced along the length of an elongated
projectile, and not just on its base. Third, the slingatron could be powered by a standard
technology motor (internal combustion, turbine, or electrical) that continuously provides
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IDENTICAL SPIRAL
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FIGURE 9. Two Counter-Gyrating Spirals that can be Re-Directed as a Unit without Precession-Inducing
Torques. The Linear Exit Sections are chosen to have a length so that the Phase-Locked Projectiles Exit
when the Swing Velocity is Parallel to the Tube. to Minimize Angular Dispersion at Launch.
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energy to the spiral, which in turn directly couples its inertial energy into projectiles
passing through the spiral. Finally, the device appears capable of accelerating a
continuing stream of smart projectiles through the spiral with the maximum rate being
limited by either the gyration frequency or the available power.

Figure 9 shows an arrangement in which 2 counter-gyrating spirals are assembled
so that as a unit they can be swiveled for aiming without causing precession-inducing
torques, and Figure 10 shows a concept of a rapid-fire slingatron based on this
arrangement in which a turbine is shown powering the system.

The counter-gyrating spirals shown in Fig 9 are mounted on opposite sides of a
common drive-plate structure, and the drive-plate would undergo a small-amplitude
linear oscillation in response to the pair of counter-gyrating spirals. Ratchets could
ensure that the spirals turn in opposite directions, and the drive plate ensures their locked
frequency. Thus the pair of counter-gyrating spirals could be brought up to speed by a
single high-powered motor that drives a small-amplitude linear oscillation of the drive
plate. (This differs from the circular motion of the drive plate discussed in the context of
a design for an experimental test in Figs 4 and 5.)

FIGURE 10. Concept for a Continuous-Fire Dual-Spiral Slingatron powered by a Turbine that Drives a
Small-Amplitude Linear Oscillation of a Single Drive Plate. The Counter-Gyrating Spirals are located on
opposite sides of the Drive Plate. It consumes kerosene and air and fires projectiles without cartridges.
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Projectile Feed System

An example is shown in Fig 11. It consists of a loading block that is propelled by
an electrically controlled piston along 2 rods on which it executes a linear oscillation with
its maximum speed equal to the gyration speed v. The fire rate could thus be controlled,
with a maximum of 0.5f to reduce stresses. The loading block picks up a projectile
from a feed chute when the block reaches its maximum amplitude and has zero speed.
The loading block then pushes the projectile (past a retaining stop) into the spiral
entrance when the block and the spiral are moving adjacent and parallel with velocity v.

Example 1: lkg Smart Projectiles Launched at 3 km/sec from a 40mm Tube.

Here we consider the case in which the prime power supply has sufficient power to
provide a continuous fire rate that might suffice for some long-range missions. This
enables one to directly power the spiral with a single prime power supply without any
intermediate power-conditioning step, as shown in Fig 10.

FIGURE 11. The loading block linearly oscillates along two rods. A projectile is transferred from a feed
chute into the loading block when it is at its maximum amplitude, and subsequently pushed into the spiral
entrance when the block and spiral entrance are moving parallel to each other with the same swing speed v.

For example, note that a single turbofan engine used on a 747 plane puts out 27.5
MW of power and weighs 4 tons. Assuming a turbine power unit with these numbers
(without the bypass fan), and a launch efficiency of 50%, the slingatron could maintain a
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continuous stream of smart 1 kg 3 km/sec projectiles with a fire rate of fhots = 3 shots/see,
that might suffice for some ground-to-air-missions.

An example of a set of numbers for such a machine are: swing speed v = 200 m/see,
frequency f = 90 cps, tube ID = 4 cm and OD = 6 cm, swing radius r = 35.4 cm, final
radius of curvature R = 5.31 meters, velocity gain per turn AV = 1.088 km/sec, number of
turns in the spiral = 2.75, projectile diameter dp - 4 cm, length lp = 32 cm, and average
mass density pp = 2.5 gmr/cc. Note, larger f gives a smaller R, e.g., f= 120 cps and V
2.5 k/s gives R = 3.32 meters which would be suitable for a mobile platform.

Example 2: 50 kg Smart Projectiles Launched at 3 km/sec.

For this larger example, we note that 250MW turbines exist for example in some
power generation plants. Assuming the same - 50% efficiency, a single turbine of this
power could launch a steady stream of 50 kg projectiles at 3 km/see with a continuous
fire rate of 1 per 1.8 seconds.

Heating of a Spiral Slingatron Tube Used for a Continuous Stream of Shots

Although the slingatron delivers a relatively small thermal load into its guide tube,
some heating does occur which we now estimate. In a continuous fire situation, repeated
traversals of the track by projectiles will cause the track surface temperature to increase
due to projectile sliding friction. Each projectile will impart a thermal pulse to the track
and leave in its wake a temperature spike immediately behind the projectile. The track
surface then cools as heat diffuses deeper into the tube wall until traversed by another
projectile. This process continues and gradually increases the average temperature of the
track. However, if this average heating occurs slowly enough, heat can diffuse through
the guide tube wall and be removed from the outer surface by convection into the air
through which it gyrates, in which case further temperature increase of the inner wall
ceases. Here we derive some simple formulas for the spike and average temperature
increases of the track and the potential for heat removal for continuous operation of the
launcher. The projectiles are assumed to be simple cylinders of length lp and diameter d
comparable to the inner diameter of the guide tube.

The friction power dissipated by a single projectile is gmV 3/R where R is the local
radius of curvature of the guide tube. This power is shared by evaporation and heating of
bearing gas from the projectile contact surface, and heating of the track throughout the
semi-circular contact arc 7id/2 swept out by the projectile. The contact pressure and
friction power density are assumed constant throughout the half-cylinder contact surface
of the projectile, and a fraction F of this friction power goes into track surface heating.

During a stream of shots the swept track experiences thermal flux pulses of duration
lP/V and power per unit area q, with a frequency fshots, where A 2 tdlp/2 is the projectile
contact area. The power density q in a thermal pulse, and the average power <q> per unit
area into the track area swept by repeated traversal pulses, are thus

q = gFmV 3/(AR) = nqiFppdfV 2 ,
(7)

<q> = g(mV 2/R)(2Ff~hot,/nd) = ngFpplpdffshot•V.
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For the case of a constant heat flux q entering the surface of an infinitely thick slab
of material (in this case steel), the heat diffusion equation has a simple solution for the
increase in surface temperature Ts(t) over its initial value To, namely

AT(degrees K) = Ts(t) 1- T= 2qt1 /2 (7tpsCsKs) 1 /2 = 0.84q(watts/cm2 )tsoc1/ 2 , (8)

where for steel the parameters are, specific heat c, = 0.460 Joules/(gmK), density ps
7.83 gm/cm3, and thermal conductivity K, = 0.502 watts/(cmK). Combining (7) with (8)
gives the temperature spike increase immediately behind a projectile, and the average
increase in the track temperature of the track after many traversals, namely

AT(spike) = 0.84q(lp/V) 1/2 8.341tFppfd(lpV 3 kn,/sec)1 12 ,
(9)

<AT> = 0.84<q>t1' 2 = 0.0264gFppdlpffshotsVkm/sect11 2

2
where temperature rises are in degrees K, q in watts/cm , and in the final expressions on
the right of (9) lengths, mass densities, frequencies, and times are in cgs units except for
the velocities that are in km/sec as indicated. Note that f is constant throughout the spiral,
so that AT(spike) is proportional to RV 3/2 and <AT> to jiV. If g decreases with
increasing V, then these increases in track temperature become less dependant on V.

Consider example I given in the preceding section, namely 1 kg projectiles
launched at 3 km/sec at 3 per second, i.e., fthot5 = 3 and use the slingatron numbers given
in example 1. We will also assume that the sliding friction coefficient g of such large
projectiles at V = 3 km/sec is 0.005 and that the fraction of dissipated friction energy
going into the guide tube is F = 0.2. For this choice using equation 9 we find AT(spike) =
221 K, and <AT> = 6.84t"/2 for which the average temperature would go up by - 216K
after 1000 seconds i.e., after 3000 shots. Such a slow average heating would have time to
diffuse through the tube wall for disposal so the machine could be operated continuously.

Finally, from the scaling section in Ref. 5, one can multiply all the linear
dimensions of a given design by the same number and one has a larger machine that is
geometrically similar and as viable mechanically as the smaller machine from which one
scaled. However, the temperature increase formulas (9) scale differently. Specifically, as
m increases as oX3, the spike temperature increase AT behind the projectile increases as (X
(note f cC-f), and <T> stays the same independent of a provided the shot rate fshot, is
chosen to be proportional to f. Thus very large projectiles could also be launched with
low thermal energy transfer to the guide tube wall, depending on experimental data for
the friction coefficient p. and the fraction F of friction power transferred to track heating.

SUMMARY

The dynamics, mechanics, friction, and thermal physics of the spiral slingatron
mass accelerator concept have been discussed, and projectile streams of high velocity
appear possible and potentially useful for a variety of industrial, space, and energy
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applications. Long tapered swing arms provide high swing speeds with lower gyration
frequencies and may provide a path to extremely high projectile speeds.

If smart projectiles could be manufactured that were cheap and effective, and the
slingatron works as theorized, such systems might also have a useful defense role.
Projectiles would not have to individually strike a distant target, but need to be only smart
enough to narrow down the rapid-fire stream and perhaps fragment on final approach.
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