
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP012475
TITLE: Critical Velocity of Electromagnetic Gun in Response to Projectile
Movement

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: 10th U.S. Army Gun Dynamics Symposium Proceedings

To order the complete compilation report, use: ADA404787

The component part is provided here to allow users access to individually authored sections
of proceedings, annals, symposia, etc. However, the component should be considered within
[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP012452 thru ADP012488

UNCLASSIFIED



Critical Velocity of Electromagnetic Gun

in Response to Projectile Movement

Jerome T. Tzeng'

I. US Army Research Laboratory, Attn: AMSRL-WM-MB, Aberdeen Proving Ground, MD 21005-
5066

ABSTRACT

A model is developed to investigate the dynamic response of an electromagnetic (EM)
rail gun, induced by a moving magnetic pressure during launch of projectiles. As the
projectile velocity approaches a critical value, resonance can occur and cause high amplitude
stress and strain in the rail at the instant and location of projectile's passage. In this study,
governing equations of a railgun under dynamic loading conditions are derived that illustrate a
lower-bound critical velocity in terms of material properties, geometry, and barrel cross-
section. That represents the worst case or a lower bound solution for the structure under a
dynamic loading condition. A study is then performed to show the effect of these parameters
on the critical velocity of the barrel. Accordingly, the model that accounts for projectile
velocity and gun construction can be used to guide and improve barrel design.

INTRODUCTION

A strain of very high amplitude and frequency, commonly referred to as dynamic strain
amplification, develops in a conventional gun tube due to the passage of the projectile. The
phenomenon is caused by the resonance of flexural waves when the moving pressure
approaches the velocity of wave propagation in the gun tube. The resonance response in an
isotropic cylinder attributed to a moving pressure load has been investigated by Taylor [ 1],
Jones and Bhuta[2], Tang [3], and Reismann [4]. Simkins [5] investigated the dynamic
response of flexural waves in steel gun tubes, as very large strains have been observed in a
120mm tank gun barrel. Hopkins [6] applied finite element analysis to obtain a solution in a
more complex taper geometry. Tzeng and Hopkins[7] investigated the dynamic strain effect
in cylinders made of fiber-reinforced composite materials overwrap with a metal liner. Tzeng
[8] extended the research to study fracture in the composite gun tube due to the dynamic
response.

In this paper, an analytical solution was developed to obtain the critical velocity of an
EM rail gun barrel attributed to dynamic loading conditions. Dynamic response could be a
concern particularly since a fieldable EM barrel has to be a lightweight construction with
hypervelocity launch capability. Figure 1 shows a schematic of an EM rail gun cross section
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and loading condition [9]. The rail and insulator (typically ceramic or polymer composite)
were contained and supported by a containment structure. The rails are in compression due to
the EM force acting on the rail and reaction force resulting from the containment structure.
Furthermore, the magnetic force in the rail is discontinuous at the location of projectile
armature where the electrical current passes through. The discontinuity of the force causes
local bending moment and shear stress in the rails near the armature location. The pressure
front will move along the rails as the projectile moves down through the barrel. Accordingly,
dynamic stress and strain occur as the projectile movement approaches the critical velocity of
the railgun.

ANALYSIS

Consider a railgun cross section as shown in Figure 1. The rail has a rectangular cross
section and is mechanically supported by a rigid material, a containment structure, and
insulation material [10]. The structural response of the rail can be modeled as a beam sitting
on an elastic foundation as shown in Figure 2. Accordingly, the rail is the beam and the
support from the insulation material and containment is modeled as an elastic foundation. It is
assumed that structural interaction between the rail and the containment is modeled through
the elastic constant. The magnetic pressure traveling at the speed of the projectile on the rail
can be expressed as a Heaviside step function. The governing equation for the rail gun
subjected to a moving pressure can then be derived as follows:

a2__W a4W
min + EIx+kw = q[1-H(x-Vt)], (1)

Here, w is the lateral displacement, dependent upon time, t, and axial position
coordinate, x, m is the mass per unit length and is equal to pBh, p is the density of rail
material, and B and h are the width and thickness of the rail, respectively. E is the modulus of
rail material and I is the moment of inertia of the rail cross section. The elastic constant, k,
due to the elastic foundation will be derived in a later section. The loading function, q(1 - H(x-
Vt)) in Equation (1), represents the magnetic pressure front traveling along the rail with a
constant velocity V, represented by a Heaviside step function, H(x-Vt). The magnetic pressure
q, is assumed to be constant also. Accordingly,

q(l-H(x-Vt) -0 when x> Vt

q when x• Vt (2)

Eq.(l) can be solved using separation of variables with the assumption of

w(x,t) = 5(t)O(x) (3)

Accordingly, the left-hand side of Equation (1) can be rewritten to solve the homogeneous
solution as follows:
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m b9+EIO" +k bO=O (4)

The critical velocity of the beam (rail) can be derived from the characteristic function
and the particular solution from Equation (3) as

V1= - iV (5)

Equation (5) shows that the critical velocity of a railgun subjected to a moving
pressure front is a function of the rail geometry, density, and elastic modulus. In addition, the
support from the containment structure has great influence on the dynamic behavior of the
rail. Critical velocity increases with the elastic modulus of the rails and the stiffness of
containment structures. From a design point of view, a launcher constructed with high
stiffness, lightweight, and a large moment of inertia is preferred for dynamic loading
conditions.

The elastic constant of foundation, k, can be calculated from the containment structure
if the coupling effects of the insulation material (ceramic in general) are neglected. We
consider a circular containment of a unit length subjected to concentrated loads at the inner
surface of a cylinder as shown in Figure 3(a). Accordingly, the concentrated loads are
calculated from the summation of resulting magnetic pressure. Since both the containment
geometry and loading conditions are symmetrical, the structural response can be calculated
from the free body shown in Figure 3(b). The stiffness of the containment at the location of
the concentrated load can then be obtained from the strain energy of the curved beam shown
in Figure 3(b). Neglecting the shear contribution, the strain energy can be expressed as
follows:

Yr/2 Yr /2

2 A,. E,. 2 1 v,. ,E , (6)
0 0

Where N is the normal force, M,, is the moment resulting from the concentrated load,
and R is the mean radius of the containment. A,,, I, and E, are the cross sectional area, the
moment of inertia, and elastic modulus of containment, respectively. N and M, can then be
derived as follows:

P
N =-cos 0 (7)

2
and M1 =PR (CO- 22 (8)

a 2 Kcs6-

Therefore, the strain energy of the quarter containment can be calculated in terms of
concentrated load P, material properties, and geometry. Based on Castigliano's theorem, the
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displacement at the location of the loading "P" can then be derived from the derivative of the
strain energy with respect to the "P" as follows:

(5p = U =rPR +7rPR 3  8
-P 16A.E 1 (1--- (9)

Where I, is the bending moment of inertia calculated from a unit length of containment
(curved beam) shown in Figure 3, which is equal to Y,2bt 3 (b=l); where b and t are the length
and thickness of the containment, respectively. E, is Young's modulus of the containment.
The stiffness constant of the containment can then be defined as follows

k== ) ,and P=l (10)
/p

NUMERICAL RESULTS

A baseline test case is used to obtain critical velocity for a parametric study. The gun
is composed of a pair of aluminum rails, ceramic insulation, and a steel containment. The
aluminum rail has a cross section of 12.5mm (0.5 inch) thick by 76.2mm (3.0) inch high. The
containment is 12.5mm (0.5 inch) thick. The parameters required for the simulation are listed
in Table 1:

Table 1: Mechanical properties and geometric parameters of the rail and containment

Rail (Aluminum)
Modulus (E) Thickness (h) Height (B) Density (p)
68.95 GPa 12.5x10-O m 76.2x10-3 m 2750 kg/m3

Containment (Steel)
Modulus(Ec) Thickness (t) Mean Radius (R)
206.85 GPa 12.5x103 m 63.5x10'3 m

The stiffness of the containment can be obtained from Equations (9) and (10) by
application of a unit concentrated pressure load. The inverse of deflection at the center of rail
(5p) yields the stiffness, k, as follows:

k = 1/4J = 3.48x 109 Pa.
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The k represents the spring constant of foundation for the entire rail height of 76.2 mm
(3.0 inch). The critical velocity of the barrel can then be calculated from Equation (5) as
follows:

Vcr = 1148 n/sec

The critical velocity is strongly dependent on the cross section geometry and the
mechanical properties of rail and containment. The model is based on the assumption of no
structural coupling effects from insulation materials. It is a reasonable assumption since the
bonding between rail and insulation is friction. Parametric studies are performed to compare
the baseline case that is constructed with aluminum rails and a steel containment as listed in
the Table l.

Figure 4 shows the effects of rail thickness on the critical velocity of railguns. The
geometry of containment and all material properties are identical to the baseline case. The
increase in the moment of inertia of the rail will enhance the bending stiffness of the rail.
Accordingly, the critical velocity increases with the thickness of the rail. However, the critical
velocity does not increase linearly. It varies with only a power of 0.25. The stiffness of
containment also has strong effects on the critical velocity of the railgun. Figure 5 shows the
effect of containment thickness on the critical velocity of the railgun. A thicker containment
provides higher stiffness and structural support for the rail. Accordingly, the deflection of
containment decreases as it is subjected to magnetic pressure from the rails. Mathematically, it
is modeled as the stiffness of foundation, k, which increases as illustrated in Equation (5).
The effect of the containment stiffness on the critical velocity is not linear either. It varies
with a power of 0.75.

The effect of rail material properties on the critical velocity is illustrated in Figure 6.
A combined effect on the dynamic behavior due to the density and elastic modulus of rail is
illustrated using some potential material choices. The baseline case is 7075 aluminum alloys.
Three different conductor materials are examined. GIGAS24 is an advanced aluminum alloy
with a higher modulus of 88.25 GPa (12.8 Msi). The density is about the same as the 7075
aluminum. Accordingly, a higher critical velocity is obtained due to the increase of modulus.
Glidcop is aluminum oxide dispersion strengthened cooper. It has a high modulus of 172.4
GPa and a high density of 8900 kg/m3 material. The critical velocity turns out to be lower
than the 7075 aluminum due to the high density. Finally, aluminum reinforced with
aluminum oxide (A120 3) fiber (45% volume fraction of fiber content) is used for comparison.
The modulus and density of this material are 165.5 GPa (24 Msi) and 3400 kg/m 3,
respectively. The combination of high modulus and low density gives a high critical velocity.

CONCLUSIONS

The dynamic behavior of an EM barrel can be modeled with reasonable assumptions
as a rail sitting on an elastic containment. The derived solution illustrates effects of important
design parameters and material properties on the critical velocity of barrel, which can be
applied for barrel design under dynamic conditions. A high magnitude of cyclic stress can
occur that might cause damage in the rail, accelerate growth of defect, and eventually shorten
the rail life significantly. The dynamic phenomenon is particularly crucial if gun barrels are
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designed to be a lightweight and fieldable system with hypervelocity capability. The
developed model provides a meaningful tool to guide barrel design that accounts for dynamic
response due to a moving projectile.
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Figure 2: Coordinate System and Model Simulation
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Figure 4: Effects of the rail thickness on the critical velocity
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Figure 5: Effects of the containment thickness on the critical velocity.
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Figure 6: Effects of the rail material properties on the critical velocity.
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