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STATISTICAL MODELING OF THE AIR-BLAST ATOMIZATION IN THE

LAGRANGIAN COMPUTATION OF LIQUID SPRAY

M.GOROKHOVSKI

CORIA UMR/6614 CNRS University of Rouen, Mont Saint Aignan, France

I. INTRODUCTION

When injection of liquid jet takes place into coflowing motion of high relative velocity gas, a

wide range of turbulent eddies may impact on the liquid jet causing its breakup. This regime

of atomization is often referred to as the air-blast atomization and is widely used in practical

systems. The physics of air-blast atomization is very complex 1-5. In addition to the gas

turbulence-induced breakup, many other's random processes such as multiple droplets

collision, turbulence in liquid, variations in the cavitating flow inside the injector, etc.,

contribute to the phenomenon of breakup. This implies that at each spray location, the spectra

of size of produced droplets can be very large. Then the question of what are the probabilities

of sizes that are involved into atomization, arises in the breakup modeling. Due to the

complexity of phenomenon, it is too difficult to disclose clearly a dominant mechanism of

air-blast breakup with expectation of a characteristic size of droplet. To this end, the basic

idea behind the simulation undertaken in this paper, is as follows. The process of air-blast

breakup is considered in the framework of cascade of uncorrelated breakage events in series,

independently from the initial distribution of sizes. The stochastic modeling of droplets

production under this hypotheses down to the critical (or maximum stable) size is the subject

of this paper.

The cascade idea of breakup comes from the early work of Kolmogorov written in 1941 6. in

this work, Kolmogorov described the breakup of solid particles as a discrete random process,

where the probability to break each parent particle on a given number of parts is independent

of the parent particle size. From Lyapunov's theorem, Kolmogorov has pointed out that such

a general assumption leads to the log-normal distribution of particle size in the long-time

limit. In this paper, the Kolmogorov's discrete model has been reproduced in the form of

evolution equation for distribution function. The asymptotic solution of this equation has been

applied to simulate the drop breakup alongside with Lagrangian model of spray dynamics.

Performed computations of air-blast atomization are related to a spray close to the rocket

engine configuration.



II. KOLMOGOROV'S (1941) THEORY OF THE PARTICLE BREAKUP.

Let us consider an ensemble of breaking solid particles at discrete time moments t =0,1, 2,....

These time moments are scaled by the breakup frequency v ( t = v t ). According to

6Komogorov , the number of particles N(r, t) of size p : r was selected amongst all particles

N(t) at a given moment t. The expectations of total number of particles and of particles of

size p< r were denoted as N2(t) and N(r,t) correspondingly. Considering an outcome of

breakup per unit time [t, t + 1] of a given parent particle of size r, the mean number Q(a) of

secondary particles of size p :5 a r (0 < a < 1 ) was introduced. According to hypotheses of

Kolmogorov, the probability to break each parent particle on a given number of parts is

independent of the parent particle size. In other words, Q(a) does not depend of prehistory of

breakup and is not influenced by others parent particles. By this assumption, Kolmogorov

writes:

iV(r,t + )= JN(L,KjdQ(a) (1)

Introducing the logarithm of particle-size x = In r, Kolmogorov pointed out that

T(x,,)= 27e" (2)
27(t ) N(t )

Further, denoting •=Ina and Q(a)= Q(1). S(ý), equation (1) is rewritten by Kolmogorov in

the following form:

0

T(x,, + 1)- f(x- ¢,,)dSý (3)

By Lyapunov's theorem, Kolmogorov stated that from discrete model (3), the long-time limit

form of T(x,t) tends to Gaussian function. Then the main result of Kolmogorov's work is that

N(r,t)) is asymptotically governed by log-normal law.



III. THE ASYMPTOTIC DIFFERENTIAL FORM OF THE DISCRETE

KOLMOGOROV'S MODEL.

Here the discrete model (3) is represented by its differential approximation in the long time

limit. Using parabolic scaling of variables r = g2 t, y = Ex, where e is a scaling parameter

and t is scaled by breakup frequency, the equation (3) can be written as

0

T(y, T + E 2)= JT(y- e_, r)s(ý)dý (4)

Expanding both the left-hand side and the expression under integral in (4), one gets

T(y, +2 )=T(y, r)+_ 2 aT(Y,)+ )•( 0(4)

T(y - _-•, r)=T(y, + I -(Eý)- a2 T~yT)y 1 -T' 4)1 (3 T(y,Z) + O 4)

a y 2! ay 2  3! 3

Substituting these expansions in (4) and coming back to variables t and x, one yields:

xT(x,t)x+t)x -(_4T )1 ++2( T(x,t)3x T31 (x,t)3 E If3s(ý)dg+O(e4) (5)

0 
o

where ( s)= ()d and (ý2) = Jý2 s(ý)dý are two first moments of ý. Assuming that

the integral jln af dQ(c) is limited, the equation (5) can be written in the long-time limit
0

E -4 0 (t -- oc), as

aT(x, t) +V() T(x,t)= IV(2) a2T(x,t) (6)
a t a x 2! ax2



The dimensional time has been used in (6). The solution of(6) is Gaussian function. This
6repeats the main result of Kolmogorov . At the same time, an influence of the initial

distribution before breakup starts can be taken into account by using (6). The solution of (6)

verifies to be:

T(x, t) exp -( )2(y tjT0,0 - (ý) v t)dro (7)

where T0(x 0 ) is the initial distribution of the logarithm of droplet radius and x0 is logarithm of

radius of the parent drop. One can rewrite equation (6) for the normalized distribution of

radius f(r):

(8)

The solution of this equation has the following form:

In ro + 1ý
f(rt)=!l 1 ext r2_ _)_t f°(rI)dr(

where fo (rt) is the initial distribution of droplet radius before breakup starts.

IV. IMPLEMENTATION INTO COMPUTATIONAL CODE KIVA II

IV.1 General procedure

The right hand side of equation (8) can be added to the transport spray equation7 as a source

term due to drop breakup. The modeling of the spray equation is often based on Lagrangian

formulation8. The spray is considered to be composed of discrete parcels of particles, each of

which represents a group of droplets of similar size, velocity and position. These groups of

droplets are followed as they interact and exchange momentum and energy with surrounding

gas. The basic ideas of this method, including the modeling of turbulent dispersion of



particles, are presented in 9. Here, the Lagrangian tracking is coupled with stochastic

computing of breakup. Two additional physical processes were included in the Monte Carlo

procedure. Namely, the product droplet velocity has been modeled and the breakup has been

considered down to the local magnitude of the critical (or maximum stable) radius, rr. The

liquid fuel was injected in the axial nozzle direction in form of discrete parcels of drops with

characteristic size equal to the exit nozzle radius. The injection velocity was determined from

the known liquid injection rate.

Let us consider the motion of a given j - th primary parcel that undergoes breakup. Before

breakup starts, the distribution function associated with this parcel, is Dirac function at radius

of the parent drop. After passage of time, which is inversely the breakup frequency, the new

droplets arise due to breakup. In sequel, the droplet-radius distribution function changes. We

suppose that the new distribution may be described according to solution (9) taken at v t = 1

with (ý) and (ý2-) as parameters of the model. In order to alleviate computations, we can

proceed the following way. Let us assume that once every breakup time scale, all outcomes of

breakup in the given parent parcel are in mean (over many computations), recovered by one

new parcel that replaces the parent one. The radius of droplet associated with produced parcel

is sampled from (9). The new number of droplets is computed by mass conservation from the

primary parcel to the secondary one. After the sampling procedure, the current time, t,

prescribed for produced parcel is counted from zero and Lagrangian tracking is continued up

to the moment (v t = 1) of the further breakup.

In computations, we used expressions obtained for the distribution of the logarithm of radius.

The starting distribution for the logarithm of droplet radius in j - th primary parcel is

Trj(x 0) 8(x0 -xj) (10)

Using this distribution function in (7) at v t = 1, one can express the solution by the error

function erf:

T1(x,t) = I[+ erf~ ~ )](1



The product droplet velocity is computed by adding to the primary parcel velocity a velocity

Wbu, which is randomly distributed in a plane normal to the relative velocity vector between

the parent droplet and gas. The quantity of w,,, is determined by the mean local Sauter

radius of parent drops, r32, and the breakup frequency, v:

IWb. I= i r3v (12)

IV.2 Critical radius, breakup frequency

The critical (or maximum stable) radius is determined when disruptive hydrodynamic forces

are balanced by capillary forces:

rýr = Weer1/ pgutr2  (13)

where Ur is the relative between liquid and gas velocity, 8 is the surface tension coefficient,

Wecr is the critical Weber number, which can be taken of order one over a large interval of

Ohnesorge numbers 10.11. In the paper, written in 1949 12, Kolmogorov considered the

stretched drop of insoluble liquid that was submerged in a turbulent flow. Using the Obuchov-

Kolmogorov's scaling law for the velocity difference across a size when the surface tension

force becomes significant, Kolmogorov introduced a critical size of produced droplets as:

I if2 r >> (14)

1r---- 15 V if 2 r < < rl (15)

where s is the mean viscous dissipation rate and p, is density in the gas.

An estimation of r. by using experimental data from 4 gives an enhanced magnitude of 'ir

comparing to the measurements. In order to account for the inertia of liquid, namely for the

density of the liquid p,, the expression (14) can be modified. Estimating the mean square of

relative droplet-to-gas velocity by mean viscous dissipation and Stokes time scale' 3
.1

4 ,



(2 i) (16)

one yields a new expression for critical radius:

361/3 (We. Sv 1/3 (17)
12 7) )

Using the experimental data from 4: water density, 1000 kg/m3; gas viscosity, 1.5x10-5 m2/s;

gas orifice size, 2.1 mm; surface tension, 0.07 kg/s 2; gas injection velocity, 140 m/s and by

setting the turbulent gas velocity at one tenth of the gas injection velocity, one gives for

critical radius 3x105 m, which is of the same order that was measured in 4. At the same time,

expressions (17) requires a reliable knowledge of viscous dissipation rate, which is a problem

in the turbulence computation. For these reasons, the critical radius is calculated in this work

by the standard expression (13), where u, = Vg - vP is calculated by the mean relative

velocity between gas and liquid particle, computed by the model of turbulent dispersion of

particles 13. Note that introducing the turbulent Weber number, We,.- = ur and using

(16), one may write for the critical Weber number:

WeC,. = I Reur Wei,ý (18)
36 Pg I..fu

Assuming that at scales where breakup takes place Re,• is of order of unity and ,,,r 77, one

may propose:
1 1

3( We' Pg E (19)

71 t.We.,)y pl)

The choice of the breakup frequency has to be stated from the physics of atomization. In this

paper, the breakup time scale is taken from 15-17

v=B (20)Pi2



where r32 is the local Sauter mean radius of parent drops and B = 1/ -J is taken from TAB

model 18

IV.3 Choice of parameters (J) and (•)

Multiplying (8) by r and integrating over the entire r - range give us an expression for the

first moment

(r) = (r),) exp[v ((i) + 0.5(2)) t] (21)

The condition

<~ - (22)

provides for < 0. In this paper, the magnitude for (J2) is supposed to be proportional to
(r),.

the maximal dispersion of radius In 1- In L_.. Replacing in (19) q by the local Sauter
r32

mean diameter of parent drops, one may assume that
f r 1/3

(;2)_lnr' =const lnI f-e (23)
r3. t Weer

and (J) is an arbitrary parameter to be taken according to (22) and (23).

V. EXAMPLE OF LAGRANGIAN COMPUTATION OF THE ATOMIZING

SPRAY

The configuration and inlet parameters from the CORIA's injector' 9 are used in the

computation. In this experiment, the round jet of water issues from the central tube

(DI = 1.8mm) at low velocity and atomizes by a parallel coflow of air issuing at high velocity

from an annular duct (D, = 3.4am ). An example of spatial distributions of drops in the spray,

the schematic of the injector and the evolution in time of distributions of droplet-size

probability density function (pdf) at two cross sections in the near-nozzle region are given in

Fig. 1. The pdf distributions are scaled on the total drops number crossing the given section at

the given time moment. The statistics of radius at (3-5) mm shows mostly the large unbroken

drops of size of the injector orifice that are accompanied by small striped droplets. From pdf's



at (7-9) mm, it is seen that the probability to find drops of size of the injector orifice is

essentially decreased while new droplets are produced with radius from 50 pm to 250 Rm.

These figures and zooming given in Fig.2 show that a broad spectra of droplet size is

presented by computations with a co-existence of large drops and small droplets.

Computations are performed for different inlet air and water velocities represented in 19

providing for the different magnitudes of the parameter J - PgU and the inlet Weber2

number. The qualitative agreement have been obtained between measured impact liquid core

and the estimated length of the zone presented by computed blobs of size of the injector

orifice. The modified numerical code with the stochastic model of breakup is specifically

target on the computation of the spray combustion in the configuration likely to rocket engine.

VI. CONCLUSION

A new sub-grid-scale stochastic model of drops air-blast breakup is presented in this paper.

The stochastic process is considered in the framework of cascade of uncorrelated breakage

events in series down to the critical size, independently from the initial distribution of sizes.

To this end, the Kolmogorov's discrete model of particle breakup has been reproduced in the

form of evolution equation for distribution function. The asymptotic solution of this equation

has been applied to simulate the drop breakup alongside with Lagrangian model of spray

dynamics. Performed computations of air-blast atomization are related to a spray close to the

rocket engine configuration. A broad spectra of droplet size is simulated at each spray

location with a co-existence of large drops and small droplets. The evolution of shape of the

droplet-size pdf s is shown at different sections in downstream direction.
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Fig.1 Computed one-side spatial distributions of drops and PDF's of size

at different sections. CORIA GDR injector.
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Fig.2 Zooming of spatial distributions of blobs computed in the near-injector region.


