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Growth of Nanosize and Colloid Particles by Controlled Addition of Singlets

Vladimir Privman
Center for Advanced Materials Processing,
Clarkson University, Potsdam, NY 13699-5820, U.S.A.

ABSTRACT

We outline a theoretical framework for estimating the evolution of the particle size
distribution in colloid and nanoparticle synthesis, when the primary growth mode is by externally
controlled addition of singlet building blocks. The master equations, analyzed in the leading
"non-diffusive" expansion approximation, are reduced to a set of easily numerically
programmable relations that yield information on the time evolution of the particle size
distribution.

INTRODUCTION

Recently, we have developed a theoretical model [ 1,2] that can describe semiquantitatively,
without adjustable parameters, growth of monodispersed colloids by precipitation from
homogeneous solutions [3-8]. It has been established [1-8] that most monodispersed colloids,
i.e., particles of narrow size distribution, with sizes ranging from submicron to few microns,
consist of crystalline subunits. The latter are formed as primary particles in a supersaturated
solution by the burst-nucleation mechanism [1,9,10]. They then further grow and aggregate,
primarily by the mechanism of singlet capture by growing aggregates. At the same time, the
resulting aggregates rapidly restructure to form compact, frequently spherical, polycrystalline
secondary particles, of density close to that of the bulk material and of narrow size distribution.

This two-stage growth mechanism is illustrated in Figure 1. Many important theoretical
issues have remained unsolved or only partially addressed in the literature. These include, in
particular, shape selection [11-13] and particle morphology properties. Another important open
topic involves extensions to nanosize particles. Such particles of sizes less than colloid, from few
tens to single nanometers, involve several new interesting challenges and paradigms related to
nanotechnology.

Firstly, what do we mean by "monodispersed" on the nanoscale? It is quite likely that for
most truly large-molecule-dimension nanotechnology applications, uniform size (and shape)
really means "atomically identical." This is particularly true for future electronic devices that
involve quantum effects or quantum control. For many other applications, requirements for
uniformity will be also quite strict. Therefore, methods of controlling size and shape distribution,
which found numerous applications for colloids, will be even more important for
nanotechnology.

In this work, we outline an evaluation method of particle growth controlled by addition of
singlet building blocks. We hope that these ideas will initiate the application of some of the
techniques developed in colloid science to nanoparticle synthesis. Our results will be also of
interest in interpreting growth, specifically after seeding, in colloidal synthesis.
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Figure 1. In colloid synthesis, initially, solutes are formed to yield a supersaturated solution,
leading to nucleation. The formed nuclei may further grow by diffusive mechanism. The
resulting primary particles (singlets) aggregate to form secondary particles. This latter process is
sometimes facilitated by changes in the chemical conditions in the system: the ionic strength may
increase, or the pH may change, causing the surface potential to approach the isoelectric point.
Formation of the final (secondary) particles, of narrow size distribution, is a diffusion-controlled
aggregation process, proceeding via the addition-polymcrization type growth by irreversible
capture of primary particles by the aggregates. At the same time, the aggregates also restructure
into compact final particles, exemplified here by the SEM image of a gold colloid particle.
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GROWTH BY ADDITION OF SINGLETS

The singlet building blocks in nanoparticle synthesis in solution are atomic-size species
(atoms, ions, molecules), whereas for colloid synthesis of the type described in Figure 1, they are
the (nanosize) primary particles. Furthermore, in the process of Figure 1, the supply of singlets is
"naturally" controlled by the features of their nucleation process. However, in principle the
singlets can be added externally. In nearly any such process, the initial components are supplied
over some interval of time. Their mixing in, must be fast enough to ensure uniform volume
distribution. This represents an important practical chemical engineering problem.

In is therefore quite natural to consider the time dependence of the singlet addition, and its
impact on the size distribution of the products. Specifically, for nanosize particle preparation,
there has been recent interest in stepwise processes [14,15]: after achieving the initial particle
distribution, batches of singlets are added to induce further growth.

Let N,(t) denote the volume density of particles, consisting of s singlets, at time t. We are

interested in the situation illustrated in Figure 2, when the particle size distribution evolves in
time with a sharp peak eventually present at some rather large s values. For convenience, let us
denote the singlet concentration by

C(t) = N, (t) . (1)

The singlets can be supplied at the rate p(t) per unit volume. They are consumed by the
processes involving the production of the small clusters, in the "shoulder" in Figure 2. They are
also consumed by the growing large clusters in the peak. There are two issues to consider in such
growth: how is the peak created in the first place, and how to grow it without much broadening.

NS

C
peak

shoulder

1234 s

Figure 2. The expected form of the particle size distribution in uniform colloid or nanoparticle
synthesis in solution. The peak at the large cluster sizes is growing at the expense of the supplied
singlets, the concentration of which is controlled externally. The distribution for s > 1 can be
usually assumed to be a smooth function of s, though the vertical bars at s = 2,3,4 emphasize
that the s values are actually discrete. The SEM image of cadmium sulfide colloid particles
illustrates the attainable sharpness of the size distribution.
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We will consider growth dominated by the irreversible capture of singlets by the larger
growing aggregates. Thus, we use the rate equations, with F, denoting the rate constants for

singlet capture by the s >_ I aggregates,

dN ,=(FN I- F,N,)C , s>2, (2)

dN I
= (- FC - FN,)C, (3)

di 2

where C = N,, as defined in (1), and

(dC _ (-N
=p-E , p r~c- c r,, .(4)

dt -_ dt

Let us point out that the assumption that the on/y process involving the s > I aggregates is that of
capturing singlets at the rate proportional to the concentration of the latter, F,C, is drastic but
commonly used in the colloid literature, e.g., 11,2,12,16-18]. In fact, more complex processes,
such as cluster-cluster aggregation [19,20], detachment [211 and exchange of singlets (ripening),
etc., also contribute to particle growth. However, in uniform colloid synthesis they are typically
much slower than the singlet-consumption growth. In addition, they broaden the particle size
distribution.

Another important approximation involved in writing the relations (2)-(4) is that of ignoring
particle shape distribution and their morphology. We avoid this issue, which is not well
understood, by assuming that the growing aggregates rapidly restructure into compact bulk-like
particles, of an approximately fixed shape, typically, but not always, spherical. This has been
experimentally observed in uniform colloid particle synthesis [1,3-8]. Without such
restructuring, the aggregates would be fractal [20-22].

For nanosize particle synthesis, the only assumption in the above summary that can be
questioned is that of ignoring singlet detachment for the particles in the shoulder in Figure 2.
Indeed, unlike colloid growth, which is fast and irreversible for all s in such synthesis processes,
the nanosize particle growth will be typically held back by a nucleation barrier [1,14]. During the
late stage growth, that follows the initial nucleation burst [9,10], the barrier can be quite high.
The distribution in the shoulder will approach the equilibrium Boltzmann form, governed by the
excess free energy of the aggregate formation. It is interesting to note that this fast equilibration
means that the singlets "stored" in the small, "shoulder" aggregates will be released and
available for consumption by larger aggregates in the peak, provided the latter indeed primarily
feed on "free" singlets.

If the singlets are supplied constantly, then the distribution, both for colloids and
nanoparticles, will develop a large shoulder at small aggregates, with no pronounced peak at
s >> I . If the supply is limited, then only small aggregates will be formed. An interesting recent
observation in studies of colloid synthesis [ 1,2] has been that there exist "protocols" of singlet
supply, at the rate p(t) which is a slowly decaying, sometimes rather complicated function of
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time, that yield peaked size distributions at large times. Furthermore, the primary process
summarized in Figure 1, naturally "feeds" the secondary process just at a rate like this.

For nanoparticle synthesis, the main mechanism of the early formation of the peak is by
burst nucleation, when nuclei of sizes larger than the critical size form by growing over the
nucleation barrier. Of course, seeding is another way of initiating the peaked size distribution
both for colloid and nanosize growth.

GROWTH OF THE PEAKED SIZE DISTRIBUTION

Solution of the rate (master) equations (2)-(4) requires numerical approaches and is not
particularly illuminating as to the nature of the particle growth. Therefore, we will introduce
several additional assumptions which will allow us to go a long way in simplifying the problems
in closed analytical form. The main idea is that, once the peak is formed after some transient
time or by seeding, the particles in the peak are the main consumers of the available singlets.

This assumes that the singlet concentration is controlled by adding them externally [14,15].
For nanoparticle growth, the addition is at such a rate that the nucleation barrier remains high.
The shoulder will then adjust to assume an approximately equilibrium shape, but the production
of new larger, supercritical aggregates will be negligible. For colloid growth, the shoulder will
also evolve, and new larger particles will be generated. However, if the number of larger
aggregates is already significant, they will dominate the consumption of singlets.

Thus, to prevent generation of new small aggregates, we put

F, =- 0, (5)

which is an approximation. Furthermore, we will assume that s is a continuous variable, since
we are interested in s >> 1, and that s varies in the range

0<s< o. (6)

For calculations assuming singlet transport by diffusion, one can take the large s Smoluchowski
expression for the rates [21,23],

F, = As"'
3

, (7)

where A is a known constant. Note that F,_, is proportional to the aggregate linear dimension

(which includes the factor s/3 ) and singlet diffusion constant. Our results apply for general F,.

Our last approximation is introduced in writing the continuous s form of the master
equations (2). We retain only the leading s derivative, ignoring the "diffusive" second-
derivative term (and higher-order terms). The consequences of this approximation, already used
in the literature, e.g., [12], will be discussed later. Thus, we replace (2) by

aN (s, t) a= _C(t) -[F(s)N(s,t)], (8)

with (4) replaced by
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dC() p(t)-C(t)f ds[F(s)N(s,t)]. (9)

dt
II

Let us now define the variable [1,16,18]

r(t)= f dt'C(i') Ž_ 0, (10)

and then introduce the function u(s, r) via the relation

f ds'f..).( l

We point out that usually F(s) > 0, and the lower limit of integration can be taken to zero. The
asymptotic rate expression (7) does vanish at s = 0 because of our cavalier treatment of the small
s behavior. However, the integral happens to converge, so no additional care is needed. We can
safely define the quantity s, (r) via

~'i"' ds''f F- d 
(12)0 F(s )

As u is increased from zero to infinity, the corresponding s(u, r) , for fixed r , increases from

s1,,i,(r) to infinity.
Next, we notice that the relation between the differentials implied by (I1), namely,

dr= ds - du (13)
F(s) F(u)

allows us to calculate various partial derivatives in terms of F(s) and F(u) = F(1 (s'r(t))).

This, in turn, allows one to verify, by a cumbersome calculation not reproduced here, that (8) is
solved by

N(s,,) = F (u (sr(t))) N (ii (.s, r()) ,o) , s > s~, (1-(t)) , (14)
N(s)

N(s,t) =0, 0<S<511s1, (r(t)), (15)
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where the discontinuity at s.,1, (4(t)) is possible if the initial distribution at time zero, N(s,O), is

nonzero at s = 0. Actually, within the present approximation of ignoring the effects of the details
of the size distribution for small s, we could as well require that N(0,0) = 0.

Let us summarize the above observations by emphasizing that we consider a particle size
distribution which at time t = 0 already has a well-developed significant peak at large cluster
sizes. Relations (14)-(15) will provide an approximate description of the evolution of this peak
with time, owing to supply of singlets at the rate p(t). The form of the distribution at small
particle sizes plays no role in the derivation.

In fact, neglecting the second-derivative in s, "diffusive" term in writing (8), leads to
certain artificial conclusions. Specifically, sharp features and discontinuities of the initial
distribution (as well as its derivatives, etc.) will not be smoothed out. The fact that the initial
distribution is only meaningful for s _> 0 translates into the sharp cutoff at sm,, for times t > 0.
Had we included the diffusive term, the distribution would extend smoothly to s = 0 for all
times. However, no analytical solution (14)-(15) would be available.

While this lack of smoothness is probably not important for a semiquantitative evaluation of
the size distribution, one aspect should be emphasized as critical: if the initial distribution is
already very sharp, then the neglect of the diffusive term in our expressions may result in
underestimating the width of the evolving peak.

To complete the description of the particle size distribution within the non-diffusive
approximation, we have to discuss the estimation of the function r(t). This is taken up in the
next section, where we also further mention the matter of the non-diffusive approximation.

EVALUATION OF THE PEAKED PARTICLE SIZE DISTRIBUTION

Relations (9)-(10) can be rewritten, using (14), as a system of coupled differential equations
for two unknown functions z(t) and C(t), with r(0) = 0, and C(0) externally controlled,

di-= C(t) , (16)
dt

dC
= p(t) -C(t)F(r), (17)dt

where

F(r)= I ds[r(u(s,'r))N(u(sr),O)]" (18)
s~,. (r)

These equations are easily programmed for numerical evaluation, especially if the function F(r)
is calculable analytically, so that numerical integration can be avoided. The latter is likely for the
power-law rate in (7), provided the initial distribution N(s,0) is not too complicated.

Within the approximation developed here, the number of particles larger than singlet, M,
obviously remains constant,
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M sf , sN (s,t) fsN (s,O0). (19)

The change in the average size of the particles larger than singlet,

( =), = i j ssN(,,t)], (20)

can be evaluated directly friom C(t),

(s, - (s), + [C(0)-C(t)+ + fdp(f)]. (21)

Furthermore, consideration of the increment relations following from (13), suggests that the

width of the peak, W,1, grows according to

w, = r F((), ) > W,, (22)

The inequality follows from the definition (II), assuming that for large s, F(s) is an increasing

(positive) function. This excludes an important case of constant F, appropriate for certain
models of polymerization. In this case, however, the discrete equations (2)-(4) can be analyzed
directly in great detail [16,18], so that the present formulation is not needed.

In connection with (22), the reader must be cautioned that additional broadening will result
from the second-derivative "diffusive" term neglected in our continuous s equations. The model

with the diffusive term included, requires serious numerical efforts, as does the original, discrete
s model [1,2].

In summary, with the reservations regarding the width estimates, numerical calculation of
the functions r(t) and C(t), via (16)-(18), goes a long way in estimating various properties of

the growing, peaked particle size distribution. Results and applications, specifically for the case

of the Smoluchowski rate (7), and comparison with large-scale simulation results of the discrete
s equations of the type (2)-(4), will be reported in forthcoming publications.

Even at the level of the approximation (22), it is obvious that the size distribution never

actually narrows in absolute terms. All the experimentally realized monodispersed particle
synthesis procedures in solution, investigated thus far primarily in the colloid domain, actually

yield small relative peak width, WI/(s), , by utilizing fast increase in (s), via consumption of

singlets, on the time scales short for the "diffusive" broadening to set in.
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