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ABSTRACT

Parallel molecular dynamics simulations are performed to investigate dynamic fracture in
bulk and nanostructured silica glasses at room temperature and 1000 K. In bulk silica the crack
front develops multiple branches and nanoscale pores open up ahead of the crack tip. Pores
coalesce and then they merge with the advancing crack-front to cause cleavage fracture. The
calculated fracture toughness is in good agreement with experiments. In nanostrucutred silica
the crack-front meanders along intercluster boundaries, merging with nanoscale pores in these
regions to cause intergranular fracture. The failure strain in nanostructured silica is significantly
larger than in the bulk systems.

INTRODUCTION

Amorphous silica (a-Si0 2 ) is widely used in various technological applications because of
its unique chemical and physical properties. However, the brittle nature and poor shock
resistance of silica have precluded its use as a structural material. With the synthesis of "ductile"
nanophase ceramics, there is renewed hope that novel amorphous nanostructured silica systems
that fracture more gracefully than conventional bulk a-SiO 2 will find use in structural
applications. However, any hope to enhance mechanical properties rests on understanding crack
initiation and propagation at the atomic scale. Ten years ago Simmons and al. carried out the
first Molecular Dynamics simulations to investigate brittle fracture in a-SiO 2 [1-3]. They
showed that the crack in a-SiO 2 is not only initiated by the surface defects but also has an origin
in the intrinsic structure. Nevertheless, these simulations were not large enough to study the
propagation on a largest scale.

We present here results of Molecular Dynamics (MD) simulations on crack propagation and
fracture in both bulk a-Si02 and nanostructured a-SiO 2 at low and high temperatures. These
simulations, involving a million-atom each, are performed with reliable inter-atomic potentials
on parallel computers using highly efficient algorithms. In the bulk system at room temperature
(300 K), we find that the crack-front propagates by merging with the cavities that open up just
ahead of it. In contrast, the bulk system at 1000 K many more cavities both close and far from
the crack-tip appear. Those far from the crack-tip coalesce before merging with the main crack
forming a secondary crack. In the nanostructured a-Si02 at room and high temperature, we
observe intergranular fracture with the crack meandering along the nanoparticle boundaries. The
observed crack propagation and fracture behavior in both bulk and nanostructured silica are
related to the inherent intermediate range order in these systems.
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COMPUTATIONAL PROCEDURE

MD simulations of silica are performed with a reliable inter-atomic potential, consisting of
two-body and three-body terms [4]. The two-body terms contain the effects of charge transfer,
electronic polarization, and steric repulsion. The three-body terms is a Stillinger-Weber like
potential involving bond bending and bond stretching effects. The potential is validated through
a detailed comparison with various experimental results on bulk silica glass such as elastic
moduli, static structure factor, and phonon density of states [5, 6].

Fracture simulations in bulk and nanostructured silica glasses are performed on systems
containing a million atoms each. The two bulk a-SiO2 systems were prepared by melting t0-
cristobalite at 3500 K, thermalizing it for 30,000 time steps, before cooling it gradually to 3000
K where it was again thermalized for 30,000 time steps. Following this procedure of gradual
cooling and thermalization, the system was cooling down to 5 K and then subjected to conjugate-
gradient quench which brought down the temperature to 0 K. This system was then heated to
300 K where it was further thermalized for 50,000 time steps, subsequently, the temperature was
raised to 1000 K and this system was also relaxed for 50,000 time steps.

The nanostructured system was prepared by cutting out spheres of radius 40 A from the well
thermalized bulk amorphous system [7]. These spherical nanoparticles were relaxed with the
conjugate gradient technique. Subsequently, 100 of these nanoparticules were randomly placed
in a box and consolidated at 1000 K with the application of a hydrostatic pressure that was
gradually increased to 16 GPa. Keeping the pressure fixed, the system was cooled from 1000 K
to 300 K and the system was relaxed for 30,000 time steps. Subsequently the pressure was
slowly decreased to zero. This consolidated system at 0 GPa and 300 K has a density of 2.04
g/cc which is close to the bulk density (2.2 g/cc). The nanostructured glass at 1000 K was
obtained by heating the room temperature system and subsequently thermalizing it for 30.000
time steps.

To simulate dynamic fracture the periodic boundary conditions are removed. A triangular
notch of length 50 A and width 40 A is created on one edge of the simulation box by removing
atoms. The pre-notched systems is then subjected to an external strain by displacing the atoms
included in the top and the bottom layers of the simulation box. The width of these layers is
approximately equal to a cut-off. The strained systems is subsequently relaxed under isothermal
conditions before increasing the strain further. In all the systems studied we applied a strain rate
of 0.01/ps.

RESULTS AND DISCUSSION

Figure I shows snapshots of notch and pores in bulk a-SiO2 at 300 K for different Values of
strains. Pores were analyzed by dividing each system into voxels of size 4.5 A and then
identifying empty voxels with a common edge or corner. Figure 1(a) shows the initial notch.
Figure I(b) displays that in bulk a-SiO 2 at 300 K small pores open up directly ahead of the crack
tip when the strain exceeds 3.4%. In a region approximately of 50 A ahead of the crack tip,
pores coalesce to form cavities of dimensions between 20 A and 60 A. With further increase in
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Figure 1. Snapshots of pores and cracks in bulk a-Si0 2 at 300 K. Fig. 1(a) shows the
initial notch and fig. 1(b) and 1(c) show its evolution into several branches and the
appearance of nanoscale pores at a strain of 3.4% and 6% respectively.
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Figure 2. Snapshots of pores and cracks in bulk a-SiO2 at 1000 K. The system at 1000 K
shows little progression of the pre-notch even at a strain of 5.3% (fig. 2(a)). However in fig.
2(b), further increase in strain causes the crack-front to move significantly and in fig. 2(c)
several cavities appear as a result of coalescence of nanoscale pores forming a distinct
secondary crack.

the strain (Fig. l(c)) the number of cavities increases and they form multiple branches on the
crack-front. Finally, the system ruptures completely at a strain of 6.5 %.

Figure 2 shows many features of crack and pore evolution in a-SiO2 at 1000 K similar to
those observed at room temperature, the crack-front propagates by growth and coalescence of
cavities. Nevertheless, the onset of crack in a-SiO2 at 1000 K occurs at a strain of 5.3% whereas
at room temperature it appears around 2%. Further analysis reveals that the glass at 1000 K has
pores 100 A ahead of the crack tip leading to the formation of a secondary crack, whereas in the
room temperature system, pores are mostly combined closer to the crack tip.

Figures 3 show crack and pore evolution in nanostructured a-SiO2 at 300 K. Small pores are
formed in interfacial regions along nanoparticule boundaries even in the absence of the applied
strain. As the strain increases pores grow, and some of them merge with the main crack while
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Figure 3. Snapshots of pores and cracks in nanostructured a-SiO2 at 300 K. Fig. 3(a)
displays the initial distribution of pores; in fig. 3(b) the pores show the interfacial regions
between the clusters; and fig. 3(c) shows the evolution of the crack through the interfacial
regions.

others coalcsce to form a secondary cracks approximately 100 A ahead the crack tip. At a strain
of 9 %, the primary and secondary cracks merge to cause intergranular fracture.

Quantitatively, the similarities and differences between the three systems can be seen in Fig.
4(a) where the porosities are plotted as a function of the applied strain. The two bulk a-SiO 2
systems have nearly the same porosities up to a strain of 3.5%. With further increase in the
strain, the porosity rises more sharply in the room temperature glass than in the system at 1000
K. In order to characterize more precisely the correlation between the number of pores and crack
propagation the strain dependence of crack tip positions is also analyzed. In figure 4(b) the
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Figure 4. (a) Percentage of porosity as a function of strain. (b) Position of the crack tip as
a function of the applied strain.
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position of the crack tip in a-Si02 at 300 K advances linearly while in others systems it grows
intermittently with increasing. The intermittent growth is much more accentuated in the
nanostructured systems. The plateaus in Fig. 4(b) reflect the growth of bigger cavities and/or the
formation of secondary cracks ahead of the crack tip. This behavior makes difficult to determine
precisely the crack tip velocities, although average crack tip speeds can be estimated. In the case
of a-SiO2 at 300 K the crack propagation starts at a strain of 2 % and it advances at a speed of
-800 m/s up to a strain of 6.4 %. This corresponds to half of the Rayleigh wave speed in the
material. In the case of a-SiO 2 at 1000 K the crack tip advances at a strain of 4.2 % reaching a
plateau within a small increment of strain. The crack tip hardly advances until the strain reaches
6%. Subsequently, the primary crack tip coalesces with the secondary crack. These results
strongly indicate that the strain energy in a-Si02 at 300 K is dissipated along the crack tip,
whereas in a-Si0 2 at 1000 K the strain energy is also dissipated in the formation and growth of
pores into secondary crack.

Strained nanostructured silica systems also exhibit alternating plateaus and crack growth. In
the nanostructured system at 300 K the onset of crack growth occurs at a strain of 1.5 %
followed by a plateau at strains between 3 % and 4.5 %. Further increase in strain results in an
other plateau. Finally, at a strain of 8.2 % the system undergoes intergranular fracture. These
results provide clear evidence that the strain energy supplied to this system is dissipated via the
creation of pores. As a result, this system fracture at a higher strain than its bulk counterparts.

Hence, the augmentation of the temperature in the case of the a-Si02 enhances the creation
of pores. In the case of the nanostructured the presence of many pores intrinsic of the material
plays the same role than the augmentation of the temperature. Therefore, the influence of the
temperature in the nanostructured material is smaller than in the bulk.

We have also examined the relationship between structural correlations and crack growth in
the bulk and nanostructured a-SiO 2. Experiments and atomic simulations have shown that
amorphous silica consists of corner-sharing SiO4 tetrahedra which form mostly 5-, 6- and 7-
membered rings [8]. In so far as the short-range order is concerned, pair-distribution functions
and bond-angle distributions do not reveal any notable differences and the corner-sharing
tetrahedral structure is mostly unaffected during crack propagation. The influence of
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intermediate-range order on crack initiation is analyzed through the ring distribution. Figure 5
shows these distributions for the four systems just before the onset of crack propagation. (Rings
are identified by a procedure described in [8]). The two bulk systems have significantly different
ring distributions: At 300 K, nearly 80% of the rings have 3 to 7 members and only 12% are 8-13
membered rings; at 1000 K, the population of 3- to 7-mcmbered rings drops to 52% while the
percentage of 8-13 membered rings increases to 42%. (Note that a 13-membered ring has the
same size as a 10 A pore.) Thus, pores in bulk a-SiO2 at 1000 K initiate from the breakup of
large rings that are distributed uniformly throughout the volume of the systems. In contrast, the
nanostructured systems have nearly the same ring distributions indicating that, in both cases,
pores in the interfacial regions grow by breaking up all size rings.

CONCLUSIONS

In conclusion, these million-atom MD simulations show that advancing crack-fronts in bulk
silica develop multiple branches and pores which coalesce among themselves and also with the
crack-front. The strain energy dissipated in creating nanoscale pores causes the system at higher
temperature to fracture at a much higher value of strain. In nanostructured silica glasses pores
develop mainly in intergranular regions, crack-fironts meander along intercluster boundaries and
they coalesce with pores to cause intergranular fracture. In this case temperature has small
influence on the onset of crack.
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