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Abstract

In this paper, we have studied medium-range order structures in amorphous
diamond-like carbon films with fluctuation microscopy. Medium-range order structures
are quantified by a specific form of a general four-body correlation. We name this
function as a pair-pair alignment correlation function. By analyzing speckle dark-field
images taken over different areas as a function of momentum transfer in reciprocal space,
we measured the pair-pair alignment correlation function for both thermally annealed
samples and unannealed samples. We have found that thermal annealing introduces
medium-range order in amorphous diamond-like carbon films, causing more pairs of
atoms to be aligned. These results agree with density-functional simulations. Larger-scale
simulations will be needed to fully understand our experimental results.

Introduction

Hydrogen-free amorphous diamond-like carbon films have stimulated great
interest because of their useful properties, such as high hardness, chemical inertness,
thermal stability, wide optical gap, and negative electron affinity[l]. Consequently, they
may have various potential applications in mechanical and optical coatings, MEMS
systems, chemical sensors and electronic devices. Amorphous diamond-like carbon films
often contains significant amounts of four-fold or sp bonded carbon, in contrast to
amorphous carbon films prepared by evaporation or sputtering which consist mostly of
three-fold or sp 2 bonded carbon. The ratio and the structure configurations of these three-
fold and four-fold carbon atoms certainly decide the properties of these amorphous
diamond-carbon films. Although the ratio of three-fold and four-fold carbon has been
studied with Raman spectroscopy and electron-loss-energy spectroscopy, very little has
been understood regarding key questions such as how the three-fold and the four-fold
carbon atoms are integrated in the film, and what structures those three-fold carbon atoms
take [2]. These questions cannot be simply answered by normal diffraction technique
because they involve structures beyond short-range order.

Theory

Through the history of studying amorphous materials, the radial distribution
function (RDF) has played an important role. While it is equivalent to an atomic pair
correlation function, its importance relies on the fact that this function can be directly
measured from diffraction experiments. The RDF gives good quantitative descriptions of
short-range order (2 - 5 A). However, it is almost impossible to interpret the third and the
fourth peaks in the RDF. This is because the number of atoms filling a shell of r increases
significantly as r increases. At a very large r, the RDF is approaching to the average
number density of atoms. Therefore, the RDF is an ensemble average of the short-range
order structures (2 - 5 A) of the whole sample. It can not provide information on local
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structure changes at length scales larger than 5 A, i.e., the medium-range order structures
[3].

For studies of medium-range order structures in the region from 1 nm to 5 nm,
either imaging with a resolution of the same order of magnitude or micro-diffraction with
a beam size of nanometers is needed. Only transmission electron microscopy (TEM) and
scanning transmission electron microscopy (STEM) can provide this kind of resolution.
In TEM or STEM experiments, it is straightforward to measure the fluctuation of
intensities in an image, in addition to diffraction patterns. While a diffraction pattern
yields two-body correlation functions, this variance function of k yields information
about correlations beyond the two-body correlation.

In TEM imaging mode, what is projected on the detector is actually the wave
front of the electron wave that just leaves the sample. Therefore, under coherent
illumination, the intensity of each pixel in a dark-field TEM image is contributed only by
a small column of atoms from the sample [4]. Fluctuation microscopy utilizes a
phenomenon called the speckle. Although speckle has been found in all types of coherent
imaging for many years [5], this microscopy technique is relatively new [6]. Speckle
patterns are generated by interference under coherent scattering conditions. Since the
intensity in a pixel in a speckle image is actually contributed by a small column of atoms,
fluctuations in local structures are reflected in fluctuations in the speckle intensity, as
shown in figurel.

Counting:

r/

Figure 1 An illustration of the pair-pair alignment function. It counts all atom pairs with
the same end vector. These pairs can have varied distances.

The length scale of the sampling,€olumn is directly determined by the resolution
within the resolution limit of a particular electron microscope. By tuning the resolution,
the volume of the sampling column under investigation can be tuned also. Therefore,
fluctuation microscopy with varied resolutions will be of great interest in future. With
varied resolution, we can study structure changes at different length scales. Hence the
scaling behavior of that particular sample can also be studied.

We have for the first time developed a theory to quantify the medium-range order
structure [7]. A summary of this theory is the following. A pair-pair alignment function is
defined as:

G2,2 (r)= JG4(r1,r 2 9,r/)dr, dr2  (1)
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where G4(rI, r 2, r') is a four-body correlation function with r' = r 3 - rl, ri, r2, and r 3

give the position of the second, the third and the fourth atom respectively. Therefore, this
new function G2,2( r' ) is the number density of an end vector generated by all possible
three-body or four-body configurations. This end vector is a summation of two vectors
from a three-body configuration or a four-body configuration. The number distribution of
this end vector directly yields information regarding three-body configurations and four-
body configurations, which contain correlations beyond the two-body correlations
revealed by standard diffraction patterns. The meaning of the above function is shown in
figure 1.

It is then easy to prove that G4(r1, r 2, r') is actually directly related to the Fourier
transform of the intensity fluctuation in speckle images:

kmax 2 2

g2,2 (r) oc r f ksin(kr)DW (k)(< I > -<I > )dk (2)
kmin

where g2,2(r') =r' G2,2(r'). This is the function measured in practice. It is a measure of
how many pairs of atoms are aligned in a certain volume.

Experimental details

We use DigitalMicrographTm to control a JEOL-4000EX microscope in our
experiments. A DigitalMicrograph script was written to control the whole experiment.
Once an area on the sample is chosen, the script prompts inputs of necessary parameters
in the beginning of a session. Then it scans the electron beam through reciprocal space in
an interval decided by the operator and takes a dark-field image with each momentum
transfer value. Then each dark-field image is saved in a designated folder on the
computer attached to the microscope. The same process is typically repeated for several
different areas to gain good statistics. Typically a few hundred images are taken in a
single experiment.

Another script has been composed to analyze these images. This script opens
images in a designated folder on the computer. With each image, it removes distortion
caused by modulation transfer in the CCD camera, whose modulation transfer function is
pre-measured. Then the script does a Wiener filtering and a frequency filtering. Finally it
yields a measured value of the fluctuation of intensity. With the momentum transfer value
associated with each image, the intensity fluctuation as a function of the momentum
transfer value is eventually obtained. Finally, a Fourier transform is performed on this
function to yield the pair-pair alignment function in real space.

Results

We have studied effects of thermal annealing on the medium-range order in
amorphous diamond-like carbon films. Amorphous diamond-like carbon films were
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fabricated on a silicon wafer by pulsed-laser deposition using a KrF laser and a graphite
target. They are hydrogen free and contain about 70% four-fold (sp 3) carbon with the rest
being three-fold (sp 2) carbon. These films were divided into two groups. One group was
processed by thermal annealing while the other stayed in the as-grown state. TEM
samples were made from the films by core-drilling and chemical etching. The film
thickness under TEM observations is about 30 nm.

Interestingly, thermal annealing caused great property changes in those films. For
example, before annealing, the film was under great stress, up to 7 GPa. But after
annealing, the stress was released to below 1 MPa. Stress relaxation measurements [8]
also showed that the percentage of three fold carbon atoms was increased from 30% to
about 37%. Therefore, thermal annealing causes structure changes. Our goal is to
understand those changes.

The radial distribution is measured from diffraction patterns. The results are given in
figure 2. Figure 2 shows that the annealed and unannealed films have the same short
range order structures, although their properties are dramatically different. This verifies
our point that short-range order is not enough to give a complete description of
amorphous structures.
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Figure 2. Measured reduced distribution functions show that thermal annealing does not
change short-range order while causing great properties changes.

Our results on the intensity fluctuation are plotted as a function of k in figure 3. This
variance function of k is directly related to a pair-pair correlation function that defines
medium-range order at nanometer scale. From the intensity fluctuation function, we can
measure the pair-pair alignment function with Fourier transform. Our results are given in
figure 4.

There are pronounced differences for annealed and unannealed films, which
indicates that there are medium-range order structure changes in these carbon films due
to thermal annealing.
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Figure 3. Plots of the variance as a function of k for amorphous diamond-like carbon films
with or without annealing. The solid curve corresponds to the annealed sample and the
dotted line is for the unannealed sample. The medium range order, indicated by the peaks,
is increased after thermal annealing.
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Figure 4. The measured pair-pair alignment function. The solid curve corresponds to the
annealed sample and the dotted line is for the unannealed sample. More pairs of atoms
are aligned after thermal annealing

For example, the first peak is positioned at around 0.46 A. From the radial
distribution function, we already know that the average bond length is about 1.51A.
Noticing that r' is the magnitude of an end vector generated by two pairs of atoms, we
can infer that this peak comes from two identical pairs of atoms that are closely parallel
from simple geometrical considerations. The length of each pair is the bond length, as
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illustrated in figure 1. The magnitude of this end vector, i.e. the position of this peak,
directly measures how these two identical pairs of atoms are aligned statistically. The
nearer the position is to the origin point, the more parallel these pairs are. On the other
hand, the height of each peak is proportional to the number density of the corresponding
configuration. The annealed sample has a higher peak than the unannealed one at the
same position, which means thermal annealing aligns more pairs. This agrees with
electronic property measurements and density functional simulations.

Discussions

It is interesting to notice that thermal annealing increases the medium-range order
in amorphous diamond-like carbon films. The increased medium-range order is
correlated to the released stress [8]. This process can be explained well by
thermodynamics. Growing films is a non-equilibrium process. During the growth, the
system usually does not have time to relax into a minimized free energy state if the
growth rate is too high or the substrate temperature is too low. Therefore, the resulted
film is highly stressed. Thermal annealing provides the system a channel to relax into a
smaller free energy state. Therefore, after thermal annealing, more pairs of atoms are
aligned and the stress is released correspondingly.

Conclusions

We applied fluctuation microscopy technique to study medium-range order in
amorphous tetrahedral semiconductor materials. It is shown that this technique is very
sensitive to local structure changes in the medium range order and promises solutions to
open questions that cannot be answered by current techniques. With this technique, we
found that thermal annealing introduces medium-range order in amorphous diamond-like
carbon films. A thermodynamic model is suggested to explain those results. Future
studies will be focused on modeling and systematic exploration of annealing effects.
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