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PHYSICAL AND CHEMICAL PROCESSES IN FLAMES
(AFOSR Grant No. F49620-01-1-0029)

Principal Investigator: Chung K. Law

Department of Mechanical and Aerospace Engineering
Princeton University
Princeton, NJ 08544

SUMMARY/OVERVIEW

The objectives of the present program are to develop detailed and simplified chemical kinetics
model for hydrocarbon combustion, and to understand and quantify the dynamics of flames.
During the reporting period progress were made in the following projects: (1) Laminar flame
speeds of mixtures of ethylene and n-butane were studied. Results suggest the dominant
influence of the adiabatic flame temperature in assessing the mixture flame speed. (2) A theory of
complex CSP (computational singular perturbation) for chemistry reduction and analysis was
developed. An algorithm was derived through which detailed mechanisms can be systematically
reduced to simpler ones without compromising the comprehensiveness of the original
mechanism. (3) Stretch effects on premixed flame pulsation were computationally and
analytically studied. Results show that positive (negative) stretch promotes (retards) the
development of pulsating instability, which is completely opposite to the influence of stretch on
cellular instability. (4) Pulsating instability of near-limit diffusion flames were computationally
studied. Results show that the instability and the subsequent extinction of methane and hydrogen
flames assume the characteristics of diffusion and premixed flames respectively.

TECHNICAL DISCUSSION

1. Laminar Flame Speeds of Ethylene/n-Butane/Air Mixtures

The laminar flame speed is a useful parameter towards development and validation of detailed
kinetic mechanisms of hydrocarbon fuels. The objectives of the present study are: (a) to extend
our previous study involving single fuels to fuel blends, and (b) to experimentally determine the
flame speeds by using Digital Particle Image Velocimetry (DPIV).

Regarding the first objective, we note that since nearly all practical fuels are multi-
component, it is important to develop theoretical and semi-empirical capabilities to predict the
flame speeds of fuel mixtures. Furthermore, existing reaction models of hydrocarbon combustion
were mostly developed based on results from single fuels and as such have not been adequately
verified for fuel mixtures. Finally, it is also of interest to develop semi-empirical mixing rules.

Mixtures of ethylene and n-butane were selected for study because ethylene is an important
intermediate in hydrocarbon oxidation while n-butane is a representative rn-alkane. Figure 1.1
shows experimental data of the laminar flame speeds of ethylene/air and n-butane/air mixtures.
These experimental data compare well with the calculated values obtained by using the kinetics
model developed under the present program.

Using this kinetics model, further calculations were performed for mixtures of ethylene and
n-butane in the ratios of 2:1, 1:1, and 1:2, as shown in Fig. 1.2. As is reasonable to expect, the
flame speeds of the fuel mixtures are bounded by those of ethylene/air and r-butane/air.
However, results for the mixtures seem to be weighted towards the n-butane values. The same
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biasing is also exhibited for the calculated adiabatic flame temperatures (Fig. 1.2), indicating that
the flame temperature instead of kinetic coupling could have the dominant influence on the flame
speed.

The biasing could simply be a consequence of how the composition of mixture is defined.
The present mixing ratio is the conventional one, based on the molar ratios. There are, however,
other definitions that could be more relevant physically. This aspect is being studied.

Preliminary experimental data were also taken for the laminar flame speeds of the fuel
blends, showing the same trend of biasing. In order to prepare ourselves for massive amount of
data taking, we have been developing a DPIV system which, compared to LDV, is capable of
significantly reducing the test time and positioning error.

Results of the above activities are reported in Publication No. 1.
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2. Theory of Complex Computational Singular Perturbation

The method of Computational Singular Perturbation (CSP) for the analysis and reduction of
detailed chemical mechanisms has been extended [3] to the complex eigensystem. Results show
that the time scales of chemical species change dramatically and non-monotonically, and that
oscillatory modes appear frequently in large chemical reaction mechanisms. The present method
is then employed to generate reduced mechanisms for hydrogen/air and methane/air oxidation.
Using the hydrogen/air system as an example, Fig. 2.1 shows that the number of complex modes
increases with decreasing residence time and hence increasing chemical sensitivity. Figure 2.2
shows the relation between the size of the reduced mechanism with a measure of the residence
time — the longer the residence time (smaller o) the more the number of steady-state species and
hence the smaller the mechanism. The validity of these reduced mechanisms is evaluated based
on the responses of the perfectly stirred reactors and the one-dimensional planar propagating
premixed flames. Comparison between the reduced and detailed chemistries over a wide range of
pressures and equivalence ratios show good agreement on the flame speed, temperature and
structure.
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3. Effects of Stretch on Flame Pulsation

Effects of stretch on the pulsating instability of premixed flames have been investigated [10] via
the negatively-stretched inwardly propagating spherical flame (IPF) and the positively-stretched
counterflow flame (CFF). Computational and asymptotic analysis results show that pulsating
instability is suppressed by the former and promoted by the latter.

In particular, it is shown that for a given rich hydrogen/air mixture whose one-dimensional,
freely propagating flame is pulsatingly unstable, the IPF initially propagates at the laminar flame
speed when the flame radius is large. Oscillation subsequently develops, and is then amplified,

damped, and eventually suppressed as the flame propagates inward and the magnitude of stretch
increases.
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Figure 3.1 Extinction strain rates for the steady and oscillating counterflow flames

For the positively stretched rich hydrogen/air CFF, oscillation is initiated at an equivalence
ratio much smaller than the one-dimensional rich threshold. Furthermore, the critical strain rate
leading to pulsation is smaller than the corresponding static extinction limit, implying that the
flame extinguishes in the pulsating instead of the steadily propagating mode such that the
flammable range is accordingly narrowed (Fig. 3.1). In addition, it is seen that the pulsating
flames are quasi-steady in nature in that the period of oscillation is larger than the characteristic
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flame time. As such, the unsteady flame cannot recover once the instantaneous flame
temperature is reduced below the corresponding steady-state extinction temperature.

The computationally determined pulsation limits using realistic chemistry and transport
were also found to agree well with the asymptotic results based on simplified chemistry and
transport, provided that the global activation energies and Lewis numbers are appropriately
extracted from laminar flame responses.

4. Oscillatory Extinction of Diffusion Flames

The transient behavior of spherical diffusion flames was computationally studied [11] in both the
high-velocity and radiation-induced limit of the isola response of flame extinction. Oscillatory
instability was observed near both steady-state extinction limits, with the oscillation amplitude
growing until it becomes large enough to extinguish the flame. For the hydrogen and methane
flames studied, oscillation always leads to extinction, although the characteristics of oscillation
are qualitatively different. Specifically, the methane flame exhibits large amplitude temperature
fluctuations at a frequency of about 0.35 Hz, while the hydrogen flame has small amplitude
fluctuation with a frequency of about 60 Hz. The oscillations in the methane flame appear to be
characteristic of those studied based on the diffusion flame structure, while those of hydrogen
flames are reminiscent of those observed in rich hydrogen/air premixed flames.
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