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SUPERCAVITATING 3-D HYDROFOILS AND PROPELLERS:
PREDICTION OF PERFORMANCE AND DESIGN

Spyros A. Kinnas
Ocean Engineering Group, Department of Civil Engineering
The University of Texas at Austin, Austin, TX 78712, USA
http://cavity.ce.utexas. edu, email: kinnasPmaiLutexas. edu

ABSTRACT

Recent numerical techniques for the prediction of cavitating flows, in linear and non-linear theories, are applied
on super-cavitating 2-D, 3-D hydrofoils and propellers. Some of these techniques, when incorporated within
a non-linear optimization algorithm, can lead to efficient supercavitating hydrofoil or propeller designs. This
lecture will address 3-D supercavitating hydrofoils, supercavitating and surface-piercing propellers.'2

NOMENCLATURE

a Angle Of Attack For 3-D Hydrofoil
Cp Pressure Coefficient, Cp = (P - Po)/(,n 2 D 2 )
D Propeller Diameter

KT JS
Propeller efficiency, q = KQ 27

F, Froude Number, F, = n 2D/g
g Gravitational Acceleration
F Circulation Around Each Blade Section
h Cavity Thickness Over The Blade Surface
h,, Cavity Thickness Over The Wake Surface
Js Advance Ratio, Js = Vs/nD
KQ Torque Coefficient, KQ = Q/pn2D 5

KT Thrust Coefficient, KT = T/pn 2D 4

I Cavity Length
n Propeller Rotational Frequency (rev/s)
i Unit Normal Vector
0 Perturbation Potential
P Pressure
P1 Pressure Far Upstream, at the Propeller Axis

PV Vapor Pressure of Water
P, Pressure Far Upstream, at the Submergence Depth of the Hydrofoil

Total Velocity
• Local Inflow Velocity (with respect to propeller-fixed coordinates system)

qwake Effective Wake Inflow Velocity (with respect to ship-fixed coordinates system)
Q Propeller Torque
p Fluid Density

07 Cavitation Number Based on U,,, a = (P,, - Pv)/(2U2)
07n Cavitation Number Based on n, c, = (P, - P.)/(P-n2D2)

07V Cavitation Number based on VU, av = (P, - Pv)/(pV2)
t Time
T Propeller Thrust
U, Speed of Uniform Inflow for Hydrofoils
V, Ship Speed

"2 Sections, figures, equations and footnotes are numbered starting from the first lecture of Prof. Kinnas.

Paper presented at the RTO A VT Lecture Series on "Supercavitating Flows ", held at the von Kcirman
Institute (VKI) in Brussels, Belgium, 12-16 February 2001, and published in RTO EN-O 10.
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Figure 23: Definition of the "exact", the approximate, 
and the discretized 3-D cavity and foil surface.

4 3-D HYDROFOIL

4isr1t Formulationor

Consider now a 3-D hydrofoil which is subject to a uniform inflow U" as shown in Fig. 23. The cavity
surface is denoted with SC, the wetted hydrofoil surface with Sws, and the trailing wake surface with Sw. The
total flow velocity field q(x, y, z), can be written in terms of the perturbation potential, O(x, y, z), as follows:

q(x, y, z) = U. + VO(qx, y, z). (81)

In the next four sections the necessary equations and conditions for determining O(x, y, z), as well as the cavity
planform and shape are outlined. Only the non-linear cavity solution is described. References on linearized
approaches have been given in the introduction.

4.1.1 The Green's formula

As in the case of the 2-D hydrofoil Green's third identity renders the following integral equation for O(x, y, z):
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27rO 0 O _ G 0] dS

+ OG ds (82)
Sw

n is the unit vector normal to the foil wetted surface, the cavity surface or the wake surface; AO is the potential
jump across the wake sheet; G = 1/R is the Green's function, where R is the distance between a point P and
the point of integration along the foil and cavity surface.

Equation (82) should be applied on the "exact" cavity surface as shown in Fig. 23. Based on the fast
convergence of the boundary element method with number of iterations in 2-D (as described in the previous
section), only the solution from the hybrid scheme (i.e. the first iteration) is carried out. This is equivalent to
applying Green's formula on an approximate surface, as shown in Fig. 23. This surface is comprised from the
foil surface and the trailing wake surface. The treatment of a supercavity within this scheme is discussed in
detail in (Fine & Kinnas 1993b). The approximate surface is discretized as shown at the bottom part of Fig.
23. Constant strength dipoles and sources are distributed on each of the wetted or cavitating flow quadrilateral
panels. The strength of the source distribution on the wetted foil surface is expressed via the kinematic boundary
condition:

00
_- = -U,- n; on Sws (83)

On
In the case of super-cavitation the cavity in the wake is modeled with constant strength line sources.

Equation (82) is then split into two different formulations, on the part of the cavity over the foil, and on the
part downstream of the trailing edge. The corresponding formulas are given in (Fine & Kinnas 1993a), and are
similar to those given in equations (49) and (50).

4.1.2 The dynamic boundary condition
The dynamic boundary condition (DBC) requires that the pressure everywhere inside and on the cavity be
constant and equal to the known cavity pressure, P,. As in the case of 2-D hydrofoil, Bernoulli's equation will
give:

q, = U. V/- -+Or (84)

Where q, is the magnitude of the cavity velocity qc. Note that for simplicity the hydrostatic terms, which would
be important in the case of a vertical 3-D foil, have not been included.
The cavity velocity vector, q,, may also be expressed as follows (Kinnas & Fine 1993):

qc=V s - (s -v)v] +±V,[V -(s -v)s] (85)q•= I~s x ii

where s and v are the curvilinear coordinates13 along the cavity surface (as shown in Fig. 23); s and v are the
corresponding unit vectors; V, and Vv, are given as follows:

V, 0±o+ U" -S; VV +U 0 0 -V (86)O•= -s O •s ¼ vv U -

Equations (84) and (85) may then be combined to form an equation which is quadratic in the unknown
chordwise perturbation velocity, 0/01s. The solution to this quadratic14 renders 00/0s in terms of the cavitation
number, the inflow velocity, and the unknown crossflow 00/0v:

U__ - s + Vv cos 0 + sin qOV - V2, (87)
Os

with 0 being the angle between s and v; q, is given by equation (84). Equation (87) is integrated once to form
a Dirichlet boundary condition on 0:

13 in general non-orthogonal.
14 The root which corresponds to cavity velocity vectors pointing downstream is selected.
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0(s) = 0(0) + J [right-hand-side of equ. (87)]ds (88)

0

The value of 0(0) in equation (88) at each strip is determined (as in the case of 2-D hydrofoil) via a cubic
extrapolation in terms of the unknown potentials on the wetted panels on the same strip in front of the cavity.

The crossflow term, 0/01v, in equation (88) is included in an iterative sense (Kinnas & Fine 1993).

4.1.3 The cavity thickness distribution
The kinematic boundary condition on the cavity requires that the velocity normal to the cavity is zero (in the
case of steady flows) , or, more generally (also valid in the case of unsteady flows), that the following substantial
derivative is zero:

Dt ) +q,-V (n-h)=0 (89)

where n is the coordinate normal to the foil surface under the cavity (with unit vector n) and h(s,v,t) is the
thickness of the cavity normal to the foil surface at the point (s, v) at time t. Expressing the gradient in terms
of the local directional derivatives

V= [s-(s-v)v]!+[v-(s-v)s]0 0
06 2 +n~- (90)

and performing the dot product with q, (as defined in (85)) and finally substituting the result in (89) yields
the following partial differential equation for the cavity thickness:

[Vh OhO OVh[V - cosVV,] ± [VV - cos OV]

=sin o(V - Oh) (91)

where

. + U, (92)

The partial differential equation (91) can be integrated over the entire cavity planform in order to provide
the cavity thickness. In the case of steady flow (as considered in the beginning of this section) Oh/Ot = 0. In
the part of the cavity downstream of the trailing edge a different formula, similar to that given in equation (51),
is used for the cavity height, hw (Fine & Kinnas 1993a).

4.1.4 The cavity planform
The extent (planform) of the 3-D cavity is not known and has to be determined as a part of the solution. This
is accomplished by finding the appropriate l(y) (cavity length at each spanwise location y) which satisfies the
cavity closure condition for the given cavitation number, or:

J(y; o) = h(l(y), y) = 0 (93)

4.2 Numerical aspects
The objective of the numerical analysis is to invert equation (82) subject to the conditions (83) and (88).

The numerical implementation is described in detail in (Kinnas & Fine 1991b, Kinnas & Fine 1993, Fine &
Kinnas 1993a). In brief, for given cavity planform, equation (82) is solved with respect to the unknown 0 on
the wetted foil and for the unknown Oq/On on the cavity. The cavity height at the trailing edge of the used
cavity planform are then determined by integrating equation (91). The cavity planform is adjusted accordingly
and the solution is carried over again until the corresponding heights at the cavity end are equal to zero within
some given tolerance. The numerics of the method have been extensively validated in (Kinnas & Fine 1993,
Fine & Kinnas 1993a).
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Figure 24: The split panel technique applied to the cavity trailing edge in three dimensions. The values
(extrapolated from the side of the cavity) for 0qf/On into the two parts of the split panel are also shown.

4.2.1 The split panel technique
A very crucial issue in the numerical implementation was found to be related to the treatment of panels which

were intersected by the cavity trailing edge. In order to avoid recomputing influence coefficients a technique
was devised, namely the split panel technique (Kinnas & Fine 1993, Fine 1992), in which the intersected panel
is treated as one panel with each of the 0 and 0q3/On being determined as the weighted average of the values on
the wetted and the cavitating part of the panel. This technique, as depicted on Fig. 24, provided substantial
savings on computer time since the same panel discretization can handle arbitrary cavity planforms.

4.3 Multiplicity of Solutions
Equation (93) may accept more than one solutions, i.e. produce more than one cavity planforms for a

given value of cavitation number. This is a very well known fact in two dimensions, where for some cavitation
numbers there are three solutions (two partial cavities and one supercavity). The present method has also been
found to predict multiple solutions in three dimensions (Kinnas & Fine 1992, Fine & Kinnas 1993a), as can
be seen in Figure 25. Note that for or = 0.85 two cavity planforms are predicted, one partial cavity and one
mixed cavity (slightly supercavity at midspan). The partial cavity was produced when the initial guess was a



23-6

0.75 c=0.20

0.5 j \G0.60

G0.80
0.25 _____c=0.85

0 - --- 0.85
c=0.90

-0.25 i~ 1.00

-0.5 ------ ---- 12

i i I/Hydrofoil
-0.75

F

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

2-

1.5

0.5

00  0.1 0.2 0.3 0.4 0.5

Figure 25: Multiple solutions in 3-D for or 0.85. The predicted cavity shapes are shown over half of the span
at the top and the imaxic vs. a/or curve is shown at the bottom.
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Figure 26: Froude number effect on predicted cavity planform and forces in the case the submergence depth at
which the hydrofoil operates is equal to the chord length. From (Bal et al 2001).

partial cavity and the mixed cavity when the initial guess was a supercavity. The cavity length at midchord vs
a/r is also shown at the bottom part of Fig. 25. Note the striking similarity of this curve to the well known
characteristic curve for a two dimensional cavitating flat plate (not shown in the Figure). This multiplicity of
solutions in 3-D can also be confirmed from the observed instability on the cavity extent during experiments on
cavitating 3-D foils as the cavity transitions from partial to super-cavitation.

4.4 Effects of free-surface
They are often substatial and can evaluated by using "negative" images with respect to the free-surface

in the case of very large Froude number, F, = U•/Vg-, where c is the maximum chord. In the case of finite
Froude numbers the free-surface must also be modeled with panels (Bal et al 2001). A representative result
from applying this method is shown in Fig. 26. Notice the strong dependence of the predicted cavity planform

and forces on F,.

4.5 Effects of tunnel walls
The effects of tunnel walls are known to be substantial (escpecially in the prediction of cavity extent) and

need to be included, either by imaging of the hydrofoil and cavity with respect to the tunnel walls (in the case of
2-D flow and square section tunnel), or by modeling completely the tunnel boundaries in the numerical method
(Choi & Kinnas 1998, Choi & Kinnas 1999, Kinnas et al 1998b, Kinnas et al 2000). The paneling on the 4990
3-D hydrofoil and the tunnel walls of the DTMB 36" circular section tunnel is shown in Figure 27.

Predicted cavity shapes, with and without the tunnel effects included, are shown for the 4990 3-D hydrofoil
in Figure 28. Note the drastic effect of the tunnel walls on the predicted cavity shape. The predicted cavity
plan-form when the tunnel effects are included appears to be very close to the observed, shown in Figure 29.
However, there are flow phenomena at the root of the blade (re-entrant jet, cloud cavitation at the trailing
edge) which are not modeled in the present method and thus not captured by the predictions. The predicted
cavity with the tunnel effects included, as shown in Figure 28, has been determined by manually adjusting the
cavity leading edge at each section along the span until two conditions are satisfied: (a) the cavity thickness is
positive and (b) the pressures upstream of the cavity detachment are larger than the vapor pressure.
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Figure 27: The grid on the 4990 hydrofoil, its trailing wake, and the DTMB 36" circular tunnel (the images
with respect to the flat bottom of the tunnel are also shown). The flow goes from left to right. Only half of the
tunnel panels are displayed.
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Figure 28: The predicted perspective (top) and expanded (bottom) cavity plan-forms without (left) and with
(right) the tunnel wall effects for the 4990 hydrofoil; a = 0', r = 0.62. From (Kinnas et al 1998b).

Figure 29: Photograph of the cavitating 4990 hydrofoil inside the DTMB 36inch cavitation tunnel; a = 0',
or = 0.62. Courtesy of Dr. Rood of ONR and Dr. Jessup of DTMB. From (Kinnas et al 1998b).
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Figure 30: Propeller subjected to a general inflow wake. The propeller fixed (x, y, z) and ship fixed (x6, y6, z6)
coordinate systems are shown.

5 SUPER-CAVITATING PROPELLER
5.1 Formulation

This section summarizes the formulation of the cavitating flow around a propeller given by (Kinnas & Fine
1992) and (Fine 1992).

Consider a cavitating propeller subject to a general inflow wake, ,wake (x6, y6, z6), as shown in Figure 30.
The inflow wake is expressed in terms of the absolute (ship fixed) system of cylindrical coordinates (x6, y6, z6).
The inflow velocity, T,,, with respect to the propeller fixed coordinates (x, y, z), can be expressed as the sum of
the inflow wake velocity, ,ak•,, and the propeller's angular velocity 0, at a given location Z:

(x, y, z, t)0 = wak (x, r, OB - Wt) + 0 x (94)

where r = y 2 + z 2 , OB = arctan(z/y) and Z = (x, y, z). The inflow, qwak,, is assumed to be the effective
wake, i.e. it includes the interaction between the vorticity in the inflow and the propeller (Choi 2000), (Choi &
Kinnas 2001). The resulting flow is assumed to be incompressible and inviscid. The total velocity field, d, can
be expressed in terms of T and the perturbation potential, 0, as follows:

x,y, z, t) = T,• (x, y, z,t) 0+ v(x, y, z, t) (95)

where 0 satisfies the Laplace's equation in the fluid domain (i.e. V2
0 = 0). Note that in analyzing the flow

around the propeller, the propeller fixed coordinates system is used.

5.1.1 Green's formula
The perturbation potential, 0, at every point p on the combined wetted blade and cavity surface,

SWB (t) U SC (t), must satisfy Green's third identity:

27rop(t) = SwB(t)usc(t) q(t)o q) _ G(p;q)
f I Onq (t) ' 9 S(t)I
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Figure 31: Top: Definition of the exact surface. Bottom: Definition of the approximated cavity surface.

S)nq S(t)

where the subscript q corresponds to the variable point in the integration. G(p; q) = 1/R(p; q) is the Green's
function with R(p; q) being the distance between points p and q. i'• is the unit vector normal to the integration
surface. A' is the potential jump across the wake surface, Sw (t). The definitions of SwB, SC and Sw are
depicted in Fig. 31.

Eqn. 96 should be applied on the "exact" cavity surface Sc, as shown in the drawing at the top of Fig. 31.
However, the cavity surface is not known and has to be determined as part of the solution. In this work, an
approximated cavity surface, shown in the drawn athe bottom of Fig. 31, is used. The approximated cavity
surfacheis comprised of correspo ndsrnthe a rna the cavity on the blade, SCB, and the portion of the wake
surface which is overlapped by the cavity, Scew The justification for making this approximation, as well aS a
measure of its effect on the cavity solution can be found in (Kinnas & Fine 1993) and (Fine 1992).

Using the approximated cavity surface, Eqn. 96 may be decomposed into a summation of integrals over the

blade surface, SB (=- SCB + SWB), and the portion of the wake surface which is overlapped by the cavity, SCw.

Field Points on SB.

For field points on SB, Eqn. 96 becomes:

27p(t) = I/B [q(t) oap; q) _ G(p;q (t)] dS
- IcWf q( q) S
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+ f J(rq 9 t) OG(p; q) dS; p E SB (97)
J S~W(t)USW(t) n

where q,, is the cavity source distribution in the wake, defined as:

(t) - (t) (98)

The superscripts "÷" and "-" denote the upper and lower wake surface, respectively.
The geometry of the trailing wake is assumed to be invariant with time and taken to be the same as that

corresponding to the circumferentially averaged flow (Kinnas & Hsin 1992). The dipole strength A O(r, 0, t) in
the wake is convected along the assumed wake model with angular speed W:

AO(r,O,t) = A/T (rT,t- 8 T) ; t> 0--T

AO(r, ,t) = AOS(rT); t < - (99)
W

where r, 0 are the cylindrical coordinates at any point in the trailing wake surface, Sw, and (rT, OT) are the
coordinates of the trailing edge at a point on the same streamline with (r, 9). A OS is the steady flow potential
jump in the wake when the propeller is subject to the circumferentially averaged flow.

The value of the dipole strength, A OT(rT, t), at the trailing edge of the blade at radius rT and time t, will
be given from the Morino's Kutta condition (Morino & Kuo 1974):

O.T(rT, t) = 04(rTt) - 0- (rTt) = F(rT, t) (100)

where q+ (rT, t) and 0 (rT, t) are the values of the potential at the upper (suction side) and lower (pressure
side) blade trailing edge, respectively, at time t. F is the circulation around the blade section.

Recently, an iterative pressure Kutta condition (Kinnas & Hsin 1992) is applied for the analysis of unsteady
fully wetted and cavitating propellers. The iterative pressure Kutta condition modifies AOT(rT, t) from that of
Morino to achieve equality of pressures at both sides of the trailing edge everywhere on the blade (Young et al
2001).

Field Points on SCw.

For field points on Scw, the left-hand side of Eqn. 96 reduces to 27r [q+ (t) + 0; (t)], which can be expressed
as 47rO (t) : 27rAwp(t) depending on if the equation is applied on the upper "+" or the lower "-" surface of the
supercavitating region. This will render the following expression for 0±

47woq±(t) = ±7~pt

+ f, OG (p; q) q o • t

Oflq ' Onq

J fAn(rq, 9
q, Oflq p E Scw (101)

5.1.2 Kinematic Boundary Condition on Wetted Part of the Blade
The kinematic boundary condition on the wetted portion of the blade defines the source strengths in terms

of the known inflow velocity, T,:

0q_ = _Tin(xq,yq,zq,t) .' q (102)
Onq
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5.1.3 Dynamic Boundary Condition on Cavitating Surfaces
The dynamic boundary condition on the cavitating blade and wake surfaces requires the pressure everywhere

on the cavity to be constant and equal to the vapor pressure, P,. By applying Bernoulli's equation, the total
velocity on the cavity, 4,, can be expressed as follows:

-2 2 21 220= n Dz O•. + -qwakel 2 ±-w2r2 - 2gy, - 2-t (103)

where or• =_ (po - P,)/(2n 2 D2 ) is the cavitation number; p is the fluid density and r is the distance from the
axis of rotation. P0 is the pressure far upstream on the shaft axis; g is the acceleration of gravity and y, is the
ship fixed coordinate, shown in Fig. 30. n = w/27r and D are the propeller rotational frequency and diameter,
respectively.

On the cavitating blade surface, the magnitude of the cavity velocity may also be written in terms of its
projections along § (the chordwise) and 9 (the spanwise) grid directions on the blade surface:

Isin• = 2+ -V-2VV, cos (104)

with:

V _ + T_ , §' and VvE-= ± +qn.- (105)

where ip is the angle between s and v directions, as shown in Fig. 31.
Combining Eqns. 103 and 104 renders the following expression for 2-q:

o06
- v + v± cosiP' + sini kJqI l 2 -V (106)

as

which can then be integrated to form a Dirichlet type boundary condition for ¢. The unknown terms - and
2_• on the right-hand side of Eqn. 106 are determined in an iterative manner.

On the cavitating wake surface, the coordinate § is assumed to follow the streamline 15 Thus, the total
cross flow velocity is assumed to be small, which renders the following expression for 2_•:

o06

-a= -14+I (107)

5.1.4 Kinematic Boundary Condition on Cavitating Surfaces
The kinematic boundary condition on the cavity requires the total velocity normal to the cavity to be zero.

As shown in (Kinnas & Fine 1992), the kinematic boundary condition renders the following equation for the
cavity thickness (h) on the blade:

ý_ [V6 - COS ,] + TV [Vv - cos &V6] = sin2  
- (108)

where V _= 2 + q-. i• is the total normal velocity.
Assuming again that the spanwise crossflow velocity on the wake surface is small, the kinematic boundary

condition reduces to the following equation for the cavity thickness (h,,) on the wake:

q.(t) W- aht 1 as (109)

where q•, is the cavity source distribution, defined by Eqn. 98.
The definitions of h and h,, are depicted in Fig. 32. The quantity h,, at the blade trailing edge is determined

by interpolating the upper cavity surface over the blade and computing its normal offset from the wake sheet.

16It has been found by (Fine 1992) (Fine & Kinnas 1993b) that the effect of the crossflow term in the cavitating wake region has
very little effect on the solution.
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Figure 32: Definition of the cavity height on the blade and on the supercavitating wake.

5.1.5 Cavity Closure Condition

The extent of the unsteady cavity is unknown and has to be determined as part of the solution. The cavity
length at each radius r is given by the function I (r, t). For a given cavitation number, or,, the cavity planform
l(r, t) must satisfy the following requirement:

J (l(r,t),r;or) =_ h (l(r,t),r,t) = 0 (110)

where J is the cavity height at the trailing edge of the cavity. Eqn. 110 requires that the cavity closes at its
trailing edge. This requirement is the basis of an iterative solution method that is used to find the cavity
planform.

5.1.6 Solution Method

The unsteady cavity problem is solved by inverting Eqns. 97 and 101 subjected to conditions 99, 100, 102,
106, 107, and 110. The numerical implementation is described in detail in (Kinnas & Fine 1992), (Fine 1992),
and (Kinnas & Fine 1993). In brief, for a given cavity planform, Green's formula is solved with respect to the
unknown 0 on the wetted blade surface and the unknown 2 on the cavity surface. The cavity heights are then
determined by integrating Eqns. 108 and 109. The correct cavity planform is obtained in an iterative manner
by satisfying the cavity closure condition, Eqn. 110. The split-panel technique (Fine & Kinnas 1993a) (Kinnas
& Fine 1993) is used to treat blade and wake panels that are intersected by the cavity trailing edge. Systematic
convergence studies for various propeller geometries and flow conditions, as well as several comparisons with
existing experiments of propellers in steady, unsteady, and cavitating flow are presented in (Young & Kinnas
2001).

5.2 Validation with experiments

In order to thoroughly validate PROPCAV, results from four different sets of experiments are presented.
To validate the supercavitation scheme in PROPCAV, predicted force coefficients are compared with

experimental measurements (Matsuda et al 1994) for a supercavitating propeller. The test geometry is
M.P.No.345(SRI), which is designed using SSPA charts under the following conditions: Js = 1.10, or, = 0.40,
and KT = 0.160. It should be noted that the current version of PROPCAV modifies the suction side of the
blade section aft of the midchord to render zero thickness at the trailing edge. This modification should not
affect the results as long as the blade sections aft of the midchord are within the cavitation bubble.

The comparisons of the predicted versus measured thrust (KT), torque (KQ), and efficiency (qp) are shown
in Figure 33. The propeller geometry with the predicted cavities at Js = 1.3 are shown in Figure 34. Also
shown in Figure 34 are the predicted cavitating pressures along each radial strip at Js = 1.3. It is worth noting
that at this particular combination, there is substantial midchord detachment. Figure 34 indicates that the
detachment search criterion in PROPCAV, which will be explained later, is satisfied since the cavity thickness
is non-negative and the pressures everywhere on the wetted blade surfaces are above the vapor pressure. The
comparisons shown on Figure 33 indicate that the predictions by PROPCAV agree very well with experimental
data for values of Js _< 1.2. For Js > 1.2, the comparisons are not as good because the cavities begin to detach
aft of the midchord, where the suction side geometry was modified.
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Figure 33: Comparison of the predicted and versus measured KT, KQ, and q for different advance coefficients.
From (Young & Kinnas 2001).
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Figure 34: Geometry, cavitation pattern, and cavitating pressures for propeller SRI at Js = 1.3. r, = 0.4.
07n = 07V x J2. From (Young & Kinnas 2001).
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Figure 35: Cavity shape and pressures for propeller MW1. Mid-chord cavitation. The propeller is based on a
design by Michigan Wheel Corporation, USA. Js = 1.224. Un = 0.8116. Fr = 26.6. 60x20 panels. Uniform
inflow. From (Young & Kinnas 2001).

5.3 Mid-chord detachment
The latest version of PROPCAV allows the cavity to detach from both the face (pressure side) and the

back (suction side) of the blade. The initial detachment lines are obtained based on the fully wetted pressures.
The detachment locations at each strip are then adjusted in the next revolution 16 according to the following
criterion:

1. If the cavity at the strip has negative thickness, then the detachment location is moved towards the trailing
edge of the blade.

2. If the pressure at a point upstream of the cavity is below the vapor pressure, then the detachment location
is moved towards the leading edge of the blade.

It can be shown that the above criterion is equivalent to the Villat-Brillouin smooth detachment condition.
Details of the formulation and convergence study for mid-chord detachment can be found in (Mueller 1998) and
(Mueller & Kinnas 1999). An example of mid-chord cavitation for propeller MWl 17 subjected to uniform inflow
(Js = 1.224, U = 0.8116, Fr = 26.6) is shown in Fig. 35. Also shown in Fig. 35 are the corresponding cavitating
pressures at three different strips along the span of the blade. It is worth noting that the predicted pressures
on the suction side in front of the cavity detachment are higher than the vapor pressure. This indicates that
the employed smooth detachment criterion works properly. However, the face side cavitating pressures near
the leading edge are below the vapor pressure. This is because PROPCAV was only allowed to search for back
cavitation. Had the option to search for face and back cavitation simultaneously (as explained in the next
section) been on, PROPCAV would have also detected the expected face cavitation as shown in Figure 38.

5.4 Face and back cavitation
The latest version of PROPCAV allows the cavity to grow on both sides of the blade simultaneously. In this

case, the dynamic boundary condition is applied on both cavity surfaces, and the kinematic boundary condition

i6 The solution is carried out over several complete revolutions of one blade, the "key" blade, with the effects of the other blades
being accounted for in an iterative manner.

i7The propeller geometry is based on a design by Michigan Wheel Corporation, USA (Young & Kinnas 2001).
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panels. a = ±0.3'. f/C = ±0.018 (NACAO.8). tic = 0.05 (RAE). or, = 0.15. From (Young & Kinnas 2001).
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Figure 38: Predicted 3-D cavity shape for propeller MW1. The propeller is based on a design by Michigan
Wheel Corporation, USA. 60x20 panels. Js = 1.224. or, = 0.8116. Fr = 25.6. Uniform inflow.From (Young &
Kinnas 2001).

is applied on the wetted blade surfaces. PROPCAV also has the ability to search for cavity detachments on
both sides of the blade simultaneously.

Validation test for an asymmetric 3-D hydrofoil 18 with ±1.8% camber (f/C) and or, = 0.15 (based on the
speed of the uniform inflow) at an angle of attack of ±0.30 is shown in Figure 36. As expected, the predicted
cavity shapes are identical mirror images of each other. The same validation test was performed for another
asymmetric 3-D hydrofoil at an angle of attack of ±0.5' with ±1.8% camber and or, = 0.08 . The results are
shown in Figure 37. Note that for both cases, the smooth detachment criterion are satisfied on both sides of
the 3-D hydrofoil.

An example of simultaneous face and back cavitation for propeller MWI is shown in Figure 38. The
propeller geometry is based on a design by Michigan Wheel Corporation, USA (Young & Kinnas 2001). The
flow conditions were as follows: Js = 1.224, or, = 0.8116, uniform inflow. Notice that for this propeller, there
is midchord supercavitation on the suction side of the blade, and leading partial cavitation as well as midchord
supercavitation on the pressure side of the blade. To validate the solution, the convergence of the predicted
cavities (on the back side of the blade) and forces with respect to the number of panels are shown in Figure 39.

'8 For validation studies, PROPCAV has an option where the numerical method is applied on a 3-D hydrofoil.
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Figure 39: The convergence of predicted cavities (expanded view) and forces with respect to number of panels
for propeller MWL. The propeller is based on a design by Michigan Wheel Corporation, USA. Js = 1.224.
o = 0.8116. F, = 25.6. Uniform inflow. From (Young & Kinnas 2001).
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Figure 40: Definition of exact and approximated flow boundary

6 SURFACE-PIERCING PROPELLER
6.1 Formulation

Consider a surface-piercing propeller subjected to a general non-axisymmetric inflow. For incompressible
and inviscid flow, the perturbation potential, 0, at any time t satisfies Laplace's equation in the fluid domain:

V 2 O(x,y,z,t) = 0 (111)

where (x, y, z) are the propeller fixed coordinates.
The perturbation potential, Op, at every point p on the combined wetted blade surface (SBw), ventilated

cavity surface (SCi U SC2 U Sc 3 ), and free surface (SF), must satisfy Green's third identity:

2Wq4(t) = I ( qt)_ G(p; q) ý0ý] dS (112)

where S =_ (SBW U SCi U SC2 U SC3 U SF) is the combined surfaced as defined in the blade section example
shown on Figure 40. The subscript q corresponds to the variable point in the integration. G(p; q) = 1/R(p; q)
is Green's function with R(p; q) being the distance between points p and q. i'q is the unit vector normal to the
integration surface.

Equation 112 should be applied on the "exact" cavity surface 19 (SCI U SC2 U SC3), as shown in Figure 40.
However, the cavity surface is not known and has to be determined as part of the solution. In this work, an
approximated cavity surface (on which the panels of the boundary element method are placed) is used. The
approximated cavity surface is comprised of the blade surface underneath the cavity on the blade, SC2 -* SBC,
and the portion of the wake surface which is overlapped by the cavity, (SCi U SC3 ) -* Scw. The definition
of SBC and Scw are also shown in Figure 40. The justification for making this approximation, as well as a
measure of its effect on the cavity solution, can be found in (Kinnas & Fine 1993) and (Fine 1992).

6.1.1 Linearized free surface boundary condition on the free surface, SF
The linearized free surface boundary condition requires that:

0 2¢ + g•- = 0 (113)

Ot~2

where •jis the free surface elevation. Assuming infinite Froude number condition applies, Equation 113 reduces
to:

0 = 0 on the free surface (114)

19 The ventilated surface will be referred to as the cavity surface in this work.
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Figure 41: Definition of global (X,Y,Z) and local (x,y,z) coordinate systems and parameters for the split-panel
technique.

Equation 114 implies that the "negative" image method can be used to account for the effect of the free surface.
The infinite Froude number assumption is valid because surface-piercing propellers usually operate at very high
speeds. (Shiba 1953) and (Yim 1974) have also concluded that gravity effects are negligible for Froude numbers
greater than 3.

6.2 Solution algorithm
The unsteady ventilated cavity problem is solved by inverting equations 97 and 101 (where Sw should be

eliminated from the limits of the integrals) subjected to the boundary conditions 99, 100, 108, 109, 106 (where
or, in the expression for qc, equation 103, must be evaluated by replacing P, with the atmospheric pressure,
Patm, as this is the pressure inside the ventilated surface), and 114 (enforced via the negative images of the
panels). On the wetted blade surface, 0 is unknown and 2 is known. On the ventilated cavity surface, 0 isOn
known and 2 is unknown. To simplify the solution algorithm, 0 and 2 on the "dry" part of blades are set

On O
equal to zero. Thus, the number of unknowns is reduced to the number of fully submerged panels on the blade
and on the wake. After solving Equations 97 and 101, the cavity heights are then determined by applying the
kinematic boundary condition (Equation 108) on the ventilated cavity surface.

6.2.1 Split-panel technique
One of the difficulties in the numerical modeling of surface-piercing propellers involves the discretization

of the blade and wake surfaces. The nature of the problem is highly unsteady due to the blades' entry to
and exit from the free surface. The split-panel technique, which was introduced by (Kinnas & Fine 1993) for
approximating the trailing edge of cavity planform. The partially submerged panels are split into a dry part
and a submerged part, as shown in Figure 41. The lengths of the split-panels at their midspans are ID and
Is, respectively. The source and dipole strengths on the split-panels (O/p and 20-..P) are defined as weighted

averages of the values on the dry part and the submerged part of the panel:

6 OSIS + OD ID

Oflp l--l

IS + ID

00• 2-0sIS+ -0- - 1D
= n n (115)

-On 6p IS + ID

The quantities OD and -D are set equal zero because they represent the dry part of the panel. If the split-panel

is located on the wetted side of the blade, then 2± is known via the kinematic boundary condition (Equation

89) and 0s is extrapolated from adjacent panels; if the split-panel is located on the ventilated side of the blade,
then 0s is known via the dynamic boundary condition (Equation 103) and 20 is extrapolated from adjacent
panels.
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Figure 42: Original and modified (on the suction side aft the midchord) blade section geometry of propelle
model 841-B.

The split-panel technique has the advantage that it allows the free surface to be relatively smooth without
the added burden of recomputing influence coefficients at every timestep.

6.3 Results
In order to validate the new extension of PROPCAV, numerical results for the surface-piercing propeller

model 841-B, already shown in Figure 3, are compared with experimental data. The experiments were conducted
at the free-surface cavitation tunnel at KaMeWa of Sweden (Olofsson 1996). The flow conditions were as follows:

advance coefficient: is = 0.8

submergence ratio: h/D = 0.33

shaft yaw angle: 7P = 00

shaft inclination angle: - = 00

In the numerical calculation, the blade section was modified from the original aft of the midchord, as shown
in Figure 42, in order to render zero trailing edge thickness. Furthermore, the code is still in the developmental
stage. Thus, the current results do not include the effect of the partially submerged panels.

Preliminary force predictions for propeller model 841-B are shown in Figure 43 along with experimental
data from (Olofsson 1996). The solid lines in Figure 43 represent the force coefficients predicted by PROPCAV
at different blade angles. The symbols in Figure 43 represent the measured force coefficients. As shown in
Figure 43, the maximum force coefficients predicted by PROPCAV seemed to be in reasonable agreement with
experimental measurements. However, there are discrepancies at the blade entry and exit. The authors believe
that the discrepancies at the blade entry are due to the effects of free surface up-ward jets and blade vibrations,
both of which are not captured with the current numerical model. The discrepancies at the blade exit are
probably due to the modified blade sections aft of the midchord and the change in free surface elevation. The
sensitivity of the results on the discretization parameters can be found in (Young & Kinnas 2000).

The fully submerged panels for the key blade are shown in Figure 44. The resulting pressure contours on
the wetted side of the blade are depicted in Figure 45. The predicted ventilated surface sections at different
timesteps are shown in Figure 46.
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Figure 44: Fully submerged panels on the key blade at different time steps. Propeller model 841-B. 4 Blades.
h/D = 0.33. Js = 0.8. 60x20 panels. AO = 6'.
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Figure 46: Preliminary ventilated surface sections at r/R = 0.52. Propeller model 841-B. 4 Blades. h/D = 0.33.
Js = 0.8. 60x20 panels. AO = 6'.
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Figure 47: B-spline polygon and the paneled blade geometry in CAVOPT-3D/MPUF-3A.

7 DESIGN OF SUPER-CAVITATING PROPELLER
An optimization method (CAVOPT-3D), similar to that for supercavitating hydrofoil sections, has been

developed (Mishima 1996, Mishima & Kinnas 1997). The coefficients of the objective function are determined
in terms of second order Taylor expansions from the results of MPUF-3A, a vortex and source lattice method
for cavitating propellers in unsteady flow (Kinnas et al 1998a). This method determines both the optimum
cavitating propeller loading and the corresponding blade geometry at the same time. The blade mean camber
surface is modeled with a 4x4 cubic B-spline vertex polygon net (Mishima 1996) (Griffin 1998), as shown
in Figure 47. This allows the blade surface to be modeled with relatively few number of parameters when
compared with the traditional method2" of describing the blade geometry. The location of each of the B-Spline
vertices, and thus the radial chord distribution, as well as the three-dimensional blade camber distribution, are
determined during the design process. The skew distribution can be either fixed or specified (as parabolic or
linear) up to a constant which can be also determined by the optimization. The maximum thickness to diameter
ratio along the radial direction must be specified (using structural criteria) together with the blade thickness
section shapes.

The objective function to be minimized is:

f (x) = KQ (x)

where KQ(x) is the torque coefficient obtained from MPUF-3A(Kinnas et al 1998a) and x is the design variable
vector defining the the blade B-spline polygon (usually 13).

x = [xl,x 2 ,x 3 ,....,x 13 ]T

The equality constraint function is defined as
hi(x) = KT(x) - KT 0

KT0

where KT, is the required thrust coefficient and KT(x) is the computed thrust coefficient from MPUF-3A. The
functions of the equality and inequality constraints are denoted as h (x) and gj(x) , respectively. CAVOPT-3D
currently has the option of employing five inequality constraints, defined as

Cavity area < CAMAX
Face cavity area < FAMAX

2 0 Span-wise values of pitch, rake, skew, chord, maximum thickness, maximum camber and chord-wise distributions of camber
and thickness.
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Max.skew < SKMAX

Cavity volume velocity < VVMAX

or,, - (-Cp,,,mjn) > PTOL (116)

where the values on the left hand side are the values computed from MPUF-3A and the values on the right
hand side are the user-specified limits to the left hand side values. The cavity area constraints CAMAX
and FAMAX represent the maximum allowable back and face cavity area (as a fraction of the blade area),
respectively. VVMAX corresponds to the maximum allowable blade rate cavity volume velocity harmonic,
non-dimensionalized by nR 3 . SKMAX corresponds to the maximum allowable skew at the tip of the blade. An
option for quadratic or linear skew distribution is also available. -Cp,mi, is the value of -Cp at a location
on the fully wetted part of the blade where the pressure is minimum (over all blade angles), and PTOL is a
specified tolerance.

The required input design variables required by CAVOPT-3D to set-up the design model are given as:

"* advance coefficient (Js)

"* cavitation number (on)

"* Froude number (Fr)

"* number of blades (Z)

"* hub radius (rH)

"* required thrust coefficient (KT0 )

"* inflow wake distribution

7.1 Application
The 3-D method has been applied extensively for the design of conventional propellers (Griffin & Kinnas

1998), (Kinnas et al 1999b), and more recently for the design of a supercavitating propeller (Kinnas et al 1999a).
The SRI propeller Model No. 345 (Kudo & Ukon 1994), is used as the base for the supercavitating propeller
design. It is identified here as the SRI/SSPA propeller, since the SSPA charts (Rutgersson 1979) were used to
design it.

The original thickness distribution, as shown in Figure 48 has been used as input in CAVOPT-3D. We have
forced leading-edge cavity detachment in MPUF-3A. The same design conditions as those of the SRI propeller
are used for CAVOPT-3D.

These are:

Js = 1.1, Ori = 0.484, F, = 5.0
Z = 3, rHIR = 0.19, KT, = 0.175

Uniform inflow is used. For these conditions MPUF-3A predicts KT = 0.175 and 'q = 69.4%. The corre-
sponding predicted cavity planform is shown in Figure 49.

The designed geometry by CAVOPT-3D is shown in Figures 50, 51, while a summary sheet from the design
run is shown in Figure 52 (in which the predicted cavity planform is shown at the lower right bottom).

The following things should be noted:

"* The new design has a substantially larger efficiency, 74.7%, i.e. increase in efficiency of over 7%.

"* The new design has a wider blade area and a lower pitch (for the same thrust)

"* The predicted cavities for the new design are thinner at the leading edge as well as at the trailing edge, thus
resulting into a smaller cavity drag (thus higher efficiency overall). This design philosophy has actually
been applied by (Vorus & Mitchell 1994).

" The new design may lead to midchord cavitation (due to the very thin cavities especially towards the
outer radii) and this will increase its frictional drag, and degrade somewhat the expected higher efficiency.

This case, and some more shown in (Kosal 1999), demonstrate that that CAVOPT-3D can obtain blade
geometries with higher values of efficiency when compared to geometries designed with other methods.
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Figure 48: Blade contour and cross-sections of SRI/SSPA propeller.
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Figure 51: Pitch distributions for SRI/SSPA and CAVOPT-3D designs.
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Figure 52: CAVOPT-3D design summary sheet. Note that this has been a quadratic run, i.e. a run that used

the history of a previous run in which PTOL = -0.3.


