UNCLASSIFIED

Defense Technical Informatipn Center
Compilation Part Notice

ADPO12078
TTTLE: Numerical Modeling of Supercavitating Flows
[DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:
TTTLE: Supercavitating Flows [les Ecoulements supercavitants]
To order the complete compilation report, use: ADA400728

The component part is provided here to allow users access to individually authored sections
ol proceedings, annals, symposia, etc. However, the component should be considered within
the context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP012072 thru ADP012091

UNCLASSIFIED




Numerical Modeling of Supercavitating Flows
LN. Kirschner, PhD ¢ Neal E. Fine, PhD ¢ James S. Uhiman, PhD « David C. Kring, PhD

Anteon/Engineering Technology Center
240 Oral School Road, Suite 105
Mystic, CT 06355
United States of America

SUMMARY

Supercavitating bodies can achieve very high speeds under water by virtue of reduced drag: with
proper design, a cavitation bubble is generated at the nose and skin friction drag is drastically reduced.
Depending on the type of supercavitating vehicle under consideration, the overall drag coefficient can
be an order of magnitude less than that of a fully wetted vehicle. Slender-body theory and boundary
element methods are two modern computational methods applied to the design of supercavitating
vehicles. These course notes present recent advances in the theory behind these two computational
approaches, as well as results and application of the methods to the simulation and control of
supercavitating vehicles.

1 INTRODUCTION

Naval hydrodynamics and the marine engineering sciences have been characterized by centuries of
evolutionary innovation punctuated by several revolutionary performance improvements. The
relatively continuous improvement in early paddle wheel technology, for example, became
obsolete very quickly upon introduction of the screw propeller in the late nineteenth century. The
development of undersea vehicles has seen several similar paradigm shifts, such as the introduction
of piston engines appropriately packaged to fit within a typical vehicle envelope, and the
application of acoustical homing techniques. However, until recently, there has been little interest
in very high speeds for undersea applications.

There are two primary impediments to increasing underwater vehicle speeds: current
propulsion capability and the relatively high drag of current underwater vehicle configurations.
For most of the last century in this country, relatively little research has been devoted to
significantly opening the performance envelope in these areas. Over the last decade, however,
high-speed capability has received increased attention, and dramatic advancements have been
made. These achievements have been supplemented with information concerning international
development (LEGI, 2000).

The history of hydrodynamics research displays an emphasis on eliminating cavitation, chiefly
because of the erosion, vibration, and acoustical signatures that often accompany the effect. The
drag-reducing benefits of cavitation, however, were noted during the first half of the last century,
and have received significant attention over the last decade.

Supercavitation is a hydrodynamic process by which a submerged body is almost entirely
enveloped in a layer of gas. Because the density and viscosity of the gas is dramatically lower than
that of seawater, skin friction drag can be reduced dramatically. If the body is shaped properly, the
attendant pressure drag can be maintained at a very low value, so that the overall body drag is also
reduced significantly. The process of designing a supercavitating body for minimum pressure drag,
while addressing issues of control and maneuvering, is greatly aided by the use of modern
computational methods.

This document presents details of two computational methods that have been applied
extensively during the past decade to the analysis and design of supercavitating bodies: boundary
element methods and slender- body theory. Section 2 lays the groundwork with a discussion of
several issues pertinent to the numerical modeling, including a motivation for the application of

Paper presented at the RTO AVT Lecture Series on “Supercavitating Flows”, held at the von Kdarmadn
Institute (VKI) in Brussels, Belgium, 12-16 February 2001, and published in RTO EN-010.

9-1



9-2

potential flow techniques to prediction of supercavitating flows. Section 3 presents results from
several applications of boundary element methods, including steady axisymmetric flows, unsteady
flows, and cavitating fins. Section 4 contains a discussion of slender-body theory and some
pertinent results. In section 5, we present the results of numerical flight simulation for
supercavitating vehicles that incorporates some of the computational methods discussed in previous
sections in determining the forces experienced by the vehicle in maneuvers.

These lecture notes were derived from several previous publications. The nomenclature
schemes of the original publications have been retained, but each sub-section is reasonably self-
consistent.

2  PRELIMINARY REMARKS

2.1 Vehicle Control

A properly shaped supercavitating body will have a very small pressure drag, so that the overall
body drag is also reduced dramatically over that of a fully wetted body. However, because the
center of pressure is typically located well forward with respect to the center of gravity, control and
maneuvering present special challenges. Also, whereas a fully wetted vehicle develops substantial
lift in a turn due to vortex shedding off the hull, a supercavitating vehicle does not develop
significant lift over the gas-enveloped surfaces. This requires a different approach to effecting
hydrodynamic control, and increases the relative advantage of a banked maneuvering strategy.

A supercavity can be maintained in one of two ways: (1) by achieving such a high speed that
the water vaporizes near the nose of the body, generating a cavity that grows to exceed the length
of the body; or, (2) by supplying gas to the cavity at nearly ambient pressure at more moderate (but
still very high) speeds. The first technique is known as vaporous cavitation; the second is termed
ventilation, or artificial cavitation. Schematic views of two types of notional supercavitating
bodies are shown in Figure 1. Note that each concept involves a cavitator (in this case a disk) with
a salient edge that ensures clean cavity formation near the nose of the body. The relatively small
diameter of the cavitator with respect to that of the vehicle is also important: it is this feature that
allows the pressure drag to be maintained at a manageable level. An important step in the design of
a supercavitating body is selection of a cavitator that is appropriately sized for the vehicle and
speed of interest.

Control of supercavitating vehicles presents special challenges not normally associated with
fully wetted vehicle dynamics. These arise from the absence of certain physical effects such as lift
on the body and from the presence of other effects such as the nonlinear interaction of the control
surfaces and the body with the cavity wall.

In contrast with the controlled vehicle depicted in Figure 1b, a projectile of the type shown in
Figure 1a need not have fins, since the global stability of the trajectory is maintained via occasional
tail-slap contact of the afterbody with the cavity boundary (or, at extremely high speeds, by the
forces due to the relative motion between the vapor and the body). Since the vehicle shown in
Figure 1b would incorporate some sort of guidance system, fins have been indicated that would
provide hydrodynamic control in concert with actuation of the cavitator. The blast tube (that is, the
small-diameter section of the vehicle aft of the fins) shown in Figure 1b is expected to represent a
more optimal shape than a cylinder of constant radius for certain classes of supercavitating
vehicles: if range is critical, then drag must be minimized, which (in turn) entails minimization of
the cavity diameter. The step at the after end of the mid-body allows for this.

2.2 Drag Components for Submerged Bodies

For simplicity, consider an undersea vehicle with constant mass. This excludes rocket propulsion,
but is illustrative of the physics of supercavitation drag reduction. The following analysis of the
drag force is equally applicable to rocket-propelled vehicles; however, the basic equation of vehicle
motion (equation 2.1) must be modified to account for the ejection of mass (Greenwood, 1965).



Newton’s second law of motion applied to undersea vehicles can be written (Greenwood,
1965) as

d
T-D=—(mU
dt(m ) (2.1)

where m is the vehicle mass plus the hydrodynamic added mass (Newman, 1980) and U is the
velocity of the vehicle in straight and level flight along a trajectory parallel to the thrust vector.
Under steady conditions, the thrust provided by the propulsion system, 7, balances the vehicle
drag, D. For this simple case, the dynamics and hydrodynamics of the vehicle are usually analyzed
in a body-fixed frame of reference, as shown in Figure 2.

The drag represents an integration over the vehicle surface of all components of stress acting
opposite to the direction of travel (Newman, 1980):

D= ds
j;f (pn, +n,7, +n,1, ) 22

where p is the pressure, T,x and 1, are the components of the shear stress in the x-direction, and n =
(n, ny, n,) s the unit vector normal to the surface of the vehicle.

it is often convenient to separate the total drag force into components representing the pressure
and skin-friction contributions:

D=Dp+Dp where Dp is the pressure drag and Dy is the skin-friction drag.

It should be noted that, for vehicles traveling close to a free surface, generation of gravity and
capillary waves is associated with a modification of the pressure and velocity fields on the vehicle
hull, causing a drag increase. Also, at speeds greater than the lower critical Mach number, there is
a drag increase associated with the shock wave system (Ashley and Landahl, 1965). In most cases
of interest, the primary drag component affected is the pressure drag. For purposes of analysis,
each contribution is often treated as a separate component, although some coupling of the terms
occurs. Free-surface drag will not be considered in the following discussion. A compressible flow
formulation using slender-body theory is presented in a later section, but discussion of the
associated effects on drag is relegated to the originating publication, Varghese, et al, (1997).

Denoting the fluid density as p and the free stream speed as U, the drag is typically
normalized on the product of the dynamic pressure of the free stream, }é p Uozo , and a characteristic

area, 4. For axisymmetric undersea vehicles, 4 is usually chosen as the maximum sectional area.
Thus,

5 p
Cp=———
P pU 4. 2.3)

2.3  Governing Equations

Neglecting the effect of gravity (assuming that free-surface and stratification effects are
unimportant for the case under consideration), the equations of motion of a fluid in a volume V in
the incompressible limit describe conservation of mass:

V-U=0 (2.4)
and conservation of momentum:

[i’l‘(U'V)]U :—EJerZU,
ot p (2.5)

where v is the fluid kinematic viscosity. The momentum conservation equations are referred to as
the Navier-Stokes equations.
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The relative importance of the terms on the right-hand side of equation 2.6 can be gleaned by
making the entire system dimensionless, as follows:

“A AU ¢t A
S U 2U gl
U 3

b

where L is some length characterizing the flow. For axisymmetric undersea vehicles, this length is
usually chosen as the maximum diameter. Making these substitutions into equations 2.5 and 2.6,
rearranging, and dropping the tildes gives

V-U =0 (2.6)
[iJr(U : V)]U = —ﬁvcp vy,
ot 2 R 2.7)
where
A g
= 2 —pressure coefficient
/ Us
(2.8)
and
A
£ M - Reynolds number.
v (2.9)

Prandtl noted that, as the Reynolds number increases, viscous effects become increasingly
confined to a thin boundary layer near the body surface (Schlichting, 1979). This fact, in
conjunction with certain mathematically provable laws of fluid motion (Yih, 1979), allows use of
potential flow techniques in predicting the motion of high-Reynolds-number flows past bodies
(Newman, 1980). Under these conditions, the velocity field can be determined based solely on
kinematic considerations and knowledge of conditions at the boundaries of the fluid. Once the
irrotational velocity field is known, an auxiliary equation for pressure is given by a simple form of
Bernoulli’s equation (Aris, 1962):

] ]
pH+=pU = p.+=pUZ
2 2077 (2.10)

The far field pressure, p.., is simply the hydrostatic pressure at the operating depth of the vehicle.

When the pressure of a liquid is reduced below some threshold level at constant temperature it
vaporizes. This change of phase is known as cavitation (Newman, 1980). The threshold value for
a pure liquid undergoing quasi-static pressure reduction is known as the vapor pressure, py.
Cavitation inception is often enhanced in the field due to various perturbations of ideal conditions,
including the amount of gases absorbed in the liquid, contamination by other liquids or solids, or
the presence of bubbles. The vapor pressure provides an excellent measure of the cavitation
inception pressure under most conditions of interest, however.

As fluid flows past a fully wetted body, the pressure increases to stagnation pressure at the
forward stagnation point, decreases below ambient pressure, then increases toward stagnation
pressure over the afterbody. The actual pressure recovery depends on the development of the
boundary layer and the extent of separation.

If the pressure falls below the fluid vapor pressure at any point, a vapor cavity will form. The
density of the vapor within the cavity is orders of magnitude less than that of the ambient liquid.
The dimensionless quantity characterizing the tendency of a given flow to cavitate is known as the
cavitation number:

oo P 2
1
J2pUs .11



where p. is the cavity pressure. For non-ventilated flows, the cavity pressure is approximately
equal to the vapor pressure of the ambient liquid under most conditions of current interest.

As the velocity increases, the cavitation number and the minimum pressure on the body surface
decrease, and the fluid tends to cavitate. Below a certain cavitation number, an experimentally
observed fact (one that may be explained by considering the various terms in the momentum
equation, equation 2.5) is that the velocity within the vapor cavity is very small. Consequently, to
lowest order, the pressure within the vapor cavity is constant, with a value nearly equal to the vapor
pressure of the fluid. At high Reynolds number, the shear layer forming the cavity boundary is
thin. In that case, potential flow techniques may be used to predict such flows (Newman, 1980). It
should be noted that recent results of high-Mach-number research indicate that the assumption of
negligible velocities within the cavity is not valid at very high speeds (say, at Mach numbers
approaching unity). However, for cavity-riding vehicles, the pressure can be taken as constant
within the vapor cavity.

in terms of velocity, the boundary-value problem describing the ideal supercavitating flow

shown in Figure 3 is given by the field equation describing conservation of mass (equation 2.4)
along with boundary conditions on velocity:

Un=0 on S, US, (2.12)
Us=UN1+ 6 onS, 2.13)

where Sy, is the wetted surface of the body and S, is the cavity boundary.

The dynamic condition results from applying Bernoulli’s equation (equation 2.10) along the
cavity streamline, under the constraint that the pressure within the cavity is constant with a value
equal to the cavity pressure, p.. Various techniques exist for solving such a problem, including
panel methods and slender-body theory (Kuethe and Chow, 1976). These two approaches will be
discussed in the following sections.

3  APPLICATION OF THE BOUNDARY-ELEMENT METHOD

This section describes application of the boundary element method to prediction of supercavitating
flows. Three sample problems are discussed: (1) steady, subsonic flow around an axisymmetric
disk; (2) unsteady, subsonic flow around general cavitator shapes; and (3) steady flow around
cavitating control effector fins for application to supercavitating vehicle flight control.

3.1  Steady Axisymmetric Flows

This sub-section is derived from Kirschner, et al, (1995).

The physical problem is shown in the schematic drawing of Figure4. The body is
axisymmetric and oriented parallel to the flow. The geometries under consideration in these lecture
notes include only those for which a salient cavity detachment point can be identified, although the
solution techniques described could be extended to more general shapes.

The position vector in a meridonal plane is denoted as x=xi +7j. The inner boundary of the
flow problem is the union of the wetted portion of the body and the boundary of the cavity:

S:SB USC‘ (3‘1)

The lengths of the body and cavity are denoted as 7, and /., respectively. The total length of the
combined body-cavity system is denoted as 7.

Only steady flows are considered in this sub-section. The difficulties of representing cavity
closure under this assumption are discussed below.

Unit vectors normal and tangent to the body-cavity surface in a meridonal plane are denoted as
n=n,i+n.j and s =s,i+s,j, respectively. The unit normal vector is directed into the liquid; the
unit tangent vector is directed positive aft. U, = U..i is the free stream velocity. The total velocity
at any point outside of the body-cavity surface is decomposed as

U= Umi+u (32)
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where u(x)=u, i+u, j is the disturbance velocity. As discussed above, to lowest order the cavity
pressure, p.

Potential Flow Formulation

The fluid is assumed to be incompressible and the flow is taken to be irrotational. The last
assumption guarantees the existence of a velocity potential. Under this condition, the flow field is
governed by Laplace's equation,

D
Vo=, +®, +—L=0
¥

, (3.3)
where @ is the total potential.
A disturbance potential, ¢, can be defined from the total potential by
P=U.x+¢ (3.4)

so that the disturbance velocity, u, is given by the gradient of the disturbance potential. The
disturbance potential also obeys the Laplace equation. This boundary value problem is shown in
the schematic drawing of Figure 5.

Kinematic Condition

The requirement that the flow be tangential to the body and cavity surfaces, equation 2.12,
combined with the definition of the potential in equation 3.4, gives the following kinematic
condition on the body-cavity surface, S:

29 =-n-U,onS
on . (3.5)
Dynamic Condition On The Cavity
Bernoulli's equation applied along the cavity surface can be expressed as follows:
C,=-0 onSC. (3.6)

The magnitude of the total velocity on the cavity surface is given by equation 2.13. From this, the
following expression for the disturbance potential may be applied on the cavity surface:

99 =U. 41+ o—-U.s, onS:
s . (3.7)

Cavity Termination
For a given wetted body shape and cavity length, Laplace’s equation for the disturbance potential
can be solved subject to the kinematic condition, equation 3.5, and the dynamic condition,
equation 3.7. A cavity termination model is also required.

In this work, a modified Riabouchinsky cavity termination model is used. The cavity is closed
with a Riabouchinsky wall or endplate extending from the axis of symmetry to the point at which
the cavity streamline becomes perpendicular to the axis. Along the endplate, denoted as Sy, the
kinematic condition is satisfied. In the current case, since the flow is axisymmetric, the endplate is
always perpendicular to the axis of symmetry.

It should be noted that this termination model has been chosen as a compromise between
simplicity and physical validity. The reentrant jet model is a closer representation of the physical
flow, but is more difficult to implement numerically. The reentrant jet model is discussed in
further detail below.

Solution Procedure using Boundary Elements

The disturbance velocity potential in equation 3.4 satisfies Green's third identity, a Fredholm
integral equation of the second kind, along the body, cavity, and endplate (Lamb, 1945). Thus, for



any field point x on the body-cavity surface, the disturbance velocity potential can be computed
from

27 (x) = —(J;B I:q) (x ')%G (x5x") —aa—nq) (x)G(x:x ‘)] ds(x') 58)
where the integration is performed over source points, x’, along the entire body, cavity, and
endplate surface. Green's function for this problem, G(x;x"), is

lx-x| (3.9)

Along the body and the endplate surfaces, the source strength distribution, d¢fdn, is known

and given by equation 3.5. Along the cavity surface, an expression for the dipole strength
distribution, ¢ , can be found by integrating equation 3.7:

P(s)=0(s0)+ U140 (s—50) U (x—x5) on Sc.
(3.10)

where s, is the arc length coordinate at an arbitrary fixed point on the body-cavity surface, S.

To solve for the dipole strength distribution, ¢, along the body and endplate surfaces, and the
source strength distribution, d¢f/dn, along the cavity boundary, the computational domain is
discretized into My panels along the body, M. panels along the cavity, and M, panels along the
endplate. Unequal spacing of the panels is utilized to ensure that more panels are concentrated
where large velocity gradients are expected.

The source and dipole strengths are taken to be constant on each panel. Integral equation 3.8 is
satisfied at control points on every panel. These are chosen such that each trapezoidal panel is
divided into equal areas upstream and downstream of its control point.

The unknowns to be determined are therefore

+ Mjz dipole strengths on the body panels;
+ Mc source strengths on the cavity panels;
+ My dipole strengths on the endplate panels; and,

+ the dimensionless cavity surface velocity, ¥1 +0 .

There are My + My + My, +1 quantities to be determined. Equation 3.8 gives My + My + My
equations. The zero net flux condition,

o9
f:g’;a—n ds=0

is used as another condition to form a determinate system.

Cavity Shape For Fixed Cavity Length

For the body shapes considered in these lecture notes, the cavity detachment point is known. Fora
specified cavity length, a cavity profile is assumed, and the potential-based boundary element
method used to solve for the dimensionless cavity surface velocity, Y1+0, and the source and
dipole strengths. A new estimate of the cavity profile is then determined by applying the kinematic
condition on the cavity surface, Sc. The boundary value problem is then re-solved, and the process
repeated until the cavity profile converges.

(3.11)

The kinematic condition, equation 3.5, can be written as

ng (ux + UL )= —nyuy. (3.12)
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For example, if the body cavity surface profile is defined by y = 5(x), then

db_ me M

along the cavity surface.

Prior to convergence of the cavity profile, the kinematic condition on the cavity boundary has not
been imposed. Thus, the object is to change the cavity shape such that the flux across the boundary
is minimized. Two methods have been tested for modifying the cavity shape including (1)
modification of the profile offset; and, (2) sequential modification of each panel angle followed by
re-scaling of the cavity to its original length. In practice, the latter approach has proven to be more
general and robust than the former.

Pressure and Drag

Once the potential flow problem outlined in the previous section has been solved, the pressure
coefficient on the body surface, Sg, can be computed as

2
| YUs| _ )
Cp—l—[U) =1- [5X+U 85)

o

(3.14)

The body drag is the integral of the x-component of the differential pressure force over the
wetted portion of the body and the base:

D:—|:JJ pn, dS + nBZpC}
S, .

Where B is the radius of the cavitator at the cavity detachment point. The drag coefficient is
computed as:

Cp=0 — an ds

(3.15)

(3.16)

Selected Results — Steady Flows

Sample results of the fully axisymmetric boundary element method for incompressible flow are
presented in Figure 6 through Figure 8. For additional results and discussion, refer to Kirschner, et
al, (1995).

The body-cavity profiles predicted for a 15° cone at several cavitation numbers are shown in
Figure 6. The predicted drag coefficients at each cavitation number are plotted in Figure 7 and
compared with the empirical curve fit of May (1975):

CD=0.151+0.5870‘ (317)

it can be seen that the trend is very accurate. Since the publication of Kirschner, et al (1995), a
coding error was discovered which, when corrected, virtually eliminated the offset seen in Figure 7.

The predicted maximum cavity diameter is compared with the empirical curve fit of May
(1975) in Figure 8. The following equation represents the curve fit:

L(ﬁm“)z =1.28¢"""
Co\ B (3.18)
The left-hand side of equation 3.18 is the function plotted on the ordinate of Figure 8. The
prediction appears to be excellent. Note from the figures that, if the predicted drag coefficient used
in equation 3.18 is replaced with that given by equation 3.17, the prediction of values
characterizing the cavity geometry is improved. It should be noted that May’s equation over-
predicts experimental cavity lengths at higher cavitation numbers.



Reentrant Jet Termination Model

A termination model that better represents the physics for typical supercavitating flows of interest
is the reentrant jet model, a description of which may be found in Tulin (1964). The current
formulation is based on Uhlman, et al, (1998).

For axisymmetric flows, the presence of the reentrant jet may be handled quite simply by
truncating an axisymmetric reentrant surface at a jet face, and assuming that, at this axial location,
this surface is asymptotic to a cylinder of constant diameter and the cavity surface velocity has
approached a constant limit. In the absence of gravity, and assuming that the truncated jet face is
perpendicular to the velocity, the conditions at the jet face are

82 Ul+o

n (3.20)
and

2 _,,

os (3.21)

With the disturbance potential defined by equation 3.4, the conditions to be applied at the jet face
become

a—(szm(\/1+6+l)

on (3.22)
and

% _,,

os (3.23)

Note that for two-dimensional reentrant jets with lift the conditions are more complicated. Figure 9
shows a sample computed cavity shape for a two-dimensional flat plate cavitator at an angle of
attack.

3.2  General Incompressible Flows

This section, which is based on Kring et al (2000), presents some initial results for a fully three-
dimensional time-domain simulation of the flow about general supercavitating bodies. The intent
of the effort is to study various ventilated cavitators, lifting appendages, and bodies that may
penetrate the cavity wall. The time-domain approach, useful for the formulation of the nonlinear
boundary conditions on the cavity free surface, will also allow the application of this method to
flight simulation and control studies (see section 5).

In this fully three-dimensional initial value problem for a moving, cavitating body, several
boundary conditions must be specified. These include the body boundary condition, nonlinear
cavity conditions on the moving free surface, a reentrant jet closure, and a shed wake sheet. At
each time step, these conditions are integrated both in time and in space and combined with the
governing Laplace equation to produce a boundary value problem that is formulated as a boundary
integral equation of the mixed Neumann-Dirichlet type.

The numerical scheme in this paper has been adapted from a boundary-element method
developed for free-surface gravity waves interacting with submerged and floating bodies (Kring, et
al, 1999), with guidance for the cavity boundary and jet closure conditions from Uhlman (1987 and
1989) and Fine and Kinnas (1993). The free surface scheme was designed in accordance with the
numerical stability analysis of Vada and Nakos (1993). A key result of that analysis was the
demonstration that both high-order elements and mixed explicit-implicit time marching are needed
for numerical stability. The boundary-element method employed here is a high-order, B-spline-
based approach developed originally by Maniar (1995) with a so-called fast or accelerated solver

9-9
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developed by Phillips and White (1997) and applied in Kring, et al, (1999b). Whereas direct
solution of full matrices requires computational effort proportional to the cube of the number of
unknowns, N, -- that is, effort of order N°, or O(N3) -- and other traditional methods may show
improved performance of O(N?), the accelerated method discussed in this section is O(N).

Figure 10 illustrates the potential flow, initial boundary-value problem for a cavitating disk
with a trailing cavity, reentrant jet closure, and shed wake. The body may have any shape and the
method may be extended to add lifting appendages and planing bodies.

In order to provide a computational window to track this moving body, the three-dimensional
problem is defined with respect to a mean-body frame of reference, X. Points in the inertial frame,

X, , are related to the mean-body frame by the relation:

% =%+ [U(x0)dt,

fy

(3.24)

where 7 is time. The motion of the mean-body frame, U (X,1), is a function of space since it may
be rotating with respect to the inertial frame, so that

U,6)=U(0,)+Q(0)x,
(3.25)

where Q(t) is a rotational transformation matrix and U (0,¢) is the translation at the origin. The

mean-body frame is defined about the assumed mean position of the disk cavitator, so that the disk
tends to oscillate around x =0.

Initial Conditions

The problem is started impulsively from an assumed initial geometry and distribution of potential.
Two initial conditions have been considered. In the first case, the potential on the cavity is set to
zero on an assumed surface. Physically, this can be considered as an artificial pressure and cavity
location that is released at r = 0. If the cavitator disk is set in steady motion, the transients due to
this artificial start-up should eventually decay. The second case involves solution of a Neumann
problem in which the cavity is considered to be a fixed wall. The potential from this solution is
then used as the initial condition for the time-domain simulation. The intent is to reduce the size of
the startup transient.

Governing Equation
The potential flow exterior to the surface S (the union of the cavity S .. and S ; the body, Sy;
and the jet, .S, ) is governed by the Laplace equation with allowance for the wake cuts collapsed
onto the surface S,, . Hence,
V=0
(3.26)
where ¢ is the disturbance potential.

Green’s third identity, equation 3.8, is applied in a manner similar to that described for steady
axisymmetric flows. In this case, however, we explicitly include an integration over the wake
surface, Sy, as follows:

mm@3+ﬁx¢@)G@j)—%@mGgafwdf+ﬂ;AMXMMij)J"=o 5o

where the Green’s function is defined by equation 3.9.



Cavity Conditions

The cavity conditions on S o and S - are posed in the curvilinear frame of reference defined by

the parametric surface, &(u,v,t). The parametric coordinates, (u,v), are the presumed

streamwise and circumferential directions, respectively. This semi-Eulerian formulation is
important for a numerically consistent representation of the boundary condition on the moving
surface. Surface potentials, @(u,v,t) and ¢,(v,t), are defined through the decomposition of the

perturbation potential:
O uv,0,1) = Q(u,v,0)+ 9, (v,1) (3.28)

The first part of the surface potential, ¢, satisfies the dynamic cavity condition implicitly in the
numerical scheme. The second part, ¢,, which is constant along the presumed streamline

direction, u, satisfies continuity of the disturbance potential at the cavity detachment locus and
appears explicitly in the dynamic cavity condition on the leading cavity surface.

Applying the chain rule to the decomposition leads to relations for the time-derivative and
gradient:

¢ a((l""(l’o) z

WAV Ty Vv

ot ot 9+) Vs (3.29)
and

90 .
Vo=V, (p+p )+t
n (3.30)

where 7 is the unit vector normal to the surface and V, is the surface gradient operator defined by

Srr noe1, S Tr (r yn
=a£[u—(u-v)v]+a];[v—(u-v)u]

Vllf

<~
llxvi . (3.31)
Here # and v are unit vectors that are non-orthogonal in general.

Kinematic Boundary Condition

The total time derivative of the function that defines the cavity surface must vanish. Applying the
Gallilean transform from the inertial to the mean-body frame and defining the normal coordinate,

n, and the surface displacement in the normal direction, A(u,v,t) =& (u,v,t)-A(u,v,1) , yields the
kinematic condition:

a—h—ﬁvuh =-V, ((p+(p0)-Vuh—(7-fz+g—

ot n (3.32)

Dynamic Boundary Condition
The dynamic condition specifies a constant pressure on the cavity surface at all times. The
derivation of this condition begins with the unsteady Bernoulli condition in the inertial frame
(referencing atmospheric pressure as zero). With z =0 representing the mean ocean surface:

P. =—p[a—¢+lV¢'V¢+gZ]
ot 2 (3.33)

where p, is the cavity pressure.
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Applying the Gallilean transform from the inertial to the mean-body frame and substituting
relations for the surface potential yields

00 -~ A0, ~ [ ~ 00 1 :l P
L GV o=-2010.V g, +|(0-7) 2L -~V V¢ |- gz L
at u(p at u(p() ( n)al’l 2 ¢ ¢ gZ p

(3.34)

Cavitator Wetted-Surface Condition

A Neumann body-boundary condition similar to equation 3.5 is applied to the cavitator wetted
surface, S;.

Jet Condition

The reentrant jet is artificially truncated (cut perpendicular to the streamline) and assumed to have
reached a steady diameter with no cross-flow components and a pressure equal to the cavity
pressure across the face of the cut. Thus, it has an imposed flux and an imposed pressure.
Although this is intended to be a time-accurate formulation for the cavity problem, a steady-state
jet condition has been used to date.

We start with the steady, dynamic boundary condition: equation 3.34 with the time derivative

set to zero. If there is no cross-flow, then V@ =@ n on the jet. Therefore, the jet condition

becomes
"on 2\ on P, (3.35)

where U, =U 7.

Choosing the positive root, consistent with the cavity conditions, the jet flux then becomes:

a—¢=Un+ Un2—2 gz+pC
on p (3.36)

With no cross-flow, the potential across the jet face must be constant at a given depth and is set
equal to the potential on the adjacent cavity.

Cavity Detachment and Kutta Conditions

The additional potential, ¢, on the leading cavity surface, S ., that detaches from the cavitator

Cv+ b
body boundary is specified by a detachment condition across the body-cavity intersection, ¥ | .
With the further constraint that the first surface potential vanishes at the cavity detachment line,
@ (u |z, v,1)=0, the additional potential is,

(v, 1) =0(x ‘BE’t)’ (3.37)

which represents the cavity detachment condition. A cavity trailing edge is defined at the junction
of the leading and lagging cavity surfaces where the potential jump across the wake is specified as

(et -
AQ |y (Vat)—((/) P— ‘TE>+(p0’ (3.38)
which comprises the Kutta condition. For a time-dependent wake, a nonlinear evolution equation
should govern the propagation of the shed vorticity downstream, but, to date, a simplifying
assumption has been used: The wake position is fixed and a steady state asymptotic distribution is
assumed for the shed vorticity.



Numerical Implementation

The scheme begins with initial conditions for the geometry and the surface potential, ¢, at time

t= 0. The detachment conditions, the Kutta conditions, and the mixed boundary-integral equation
are then solved simultaneously to find the normal velocity on the cavity surface and the potential
on the body. This is referred to as the mixed BVP, which will be solved at each time step as the
surface evolves. The cavity conditions and the mixed BVP must be integrated in time and space.

After the impulsive start, each step in the temporal integration begins by first satisfying the
kinematic and dynamic boundary conditions to update the geometry and surface potential on the
cavity. The mixed BVP is then solved to update the potential on the body and the normal velocity
on the cavity.

To summarize, at the start-up (t =0" ) :

0. Given initial conditions ¢°,&° on S solve mixed BVP for (pno onsS,.

At each subsequent time-step:
1. Determine body motion: impose or solve equation of motion.

n+l

2. Integrate the kinematic condition on the cavity to find 5 onS,.

3. Update the cavity and body geometry.

4. Integrate the dynamic condition on the cavity to find ¢”"' on S -
5. Set the body and jet conditions for ¢"" onS, and S Iy

6. Solve mixed BVP to find ¢,"",p,"" onS. and ¢"" on S,.

The continuous problem is discretized by a set of high-order B-spline patches that represent the
geometry of the body and cavity and another set that represent the flow quantities of potential, @,

normal velocity, ¢, , and cavity displacement, /% .

Third- to fifth-order splines and Galerkin schemes are used to spatially integrate both the cavity
conditions and the mixed BVP. The use of a high-order discretization has been shown to be stable
for the free-surface gravity wave problem where more typical flat panel methods have failed.
Initial work with low-order, three-dimensional panel methods indicated that this would hold for
cavity free-surface flows also.

The kinematic cavity condition is integrated in time using a forward (explicit) Euler method
and the dynamic cavity condition is integrated in time using a backward (implicit) Euler method.
For the dynamic condition, only the linear terms for the surface potential are treated implicitly.
This mix of explicit and implicit methods was selected based on a stability analysis for wave
propagation over discretized free surfaces.

The geometry and surface potential are represented by B-spline basis functions in space that
overlap with their neighbors. These conditions produce a banded system of linear equations that
must be solved at each time-step.

The unknown normal velocity on the cavity and potential on the body are obtained from the
solution of the boundary integral equation, which contains the detachment and Kutta conditions.
On the cavity, the disturbance potential at any instant is the sum of the known surface potential and
an unknown additional potential.

The solution of the integral equation at each time-step represents the largest computational
burden in the problem. To maintain high local accuracy and satisfy numerical stability
requirements, a high-order, B-spline, Galerkin boundary-element method is used for this integral
equation and two solvers are adopted. The first is a traditional dense matrix solver that requires
O(N*) computational memory and operations. The second is an accelerated solver, using a
precorrected fast Fourier transform (FFT) algorithm that is similar to the fast multipole method.
This involves a sparse matrix requiring only O(N) computational memory and operations.
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Selected Results — General Flows

To date, the high-order boundary-element method has been adapted for the mixed BVP with the
detachment and Kutta conditions. In Figure 11 an initial solution of the problem at the startup has
been computed. In this figure, the high negative values of the normal velocity at the trailing end of
the cavity show that the assumed geometry is too small and the cavity will lengthen along the side
in the next time step. Work on the complete simulation is in progress.

This boundary-element method is numerically convergent, has been compared to analytic
solutions for simple geometries, and has been validated experimentally in its original ship
seakeeping manifestation, but it is too early to judge the performance of the cavity time-marching
scheme and the wake sheet.

3.3  Cavitating Fins

In this section, we describe a tool used to predict the flow around cavitating fins, particularly fins
with wedge-shaped cross-sections. The tool uses a boundary element method to predict six-degree-
of-freedom forces for steady flight. The computed forces have been used as input to guidance and
control simulations, as described below. The basic computational approach is summarized in Fine
and Kinnas (1993).

A simple wedge-shaped fin geometry was considered for this investigation. It would be easily
fabricated and appropriate to operation in the supercavitating regime, but is probably not optimal,
although the wedge shape provides good strength characteristics. It is also convenient for
comparison of the boundary-element results with preliminary predictions based on two-
dimensional theory such as that of Uhlman (1987, 1989) or Wu (1956), or the various experimental
data presented in May (1975). Also, for small wedge angles, the unsteady effects associated with
the transition between partial cavitation and supercavitation are confined to a very limited range of
deflection angles.

In computing the forces, a high level of detail was required over even the limited operational
range considered, because several cavity detachment modes must be taken into account. The forces
acting on cavitating fins are complicated by these different flow regimes. For wedge-shaped fins,
four regimes must be considered. If the flow is symmetric about the symmetric fin, and the
cavitation number is low enough, a cavity develops at the base of the wedge. Of course the fin
does not develop lift in this case. At small angles of attack and moderately low cavitation numbers,
a partial cavity develops at the leading edge separately from the base cavity. At larger angles of
attack or lower cavitation numbers, the cavity originating at the leading edge becomes large enough
to merge with the base cavity, forming a supercavity that envelopes all the surfaces except the
pressure face. The lift curve slope in the supercavitating regime is less than in the partially
cavitating regime. The final regime (which has not been modeled for the current effort) involves
very high cavitation numbers. In that case, the cavities are eliminated and replaced with separation
regions. The three regimes are shown in Figure 12.

Brief Description of LScav

ETC’s Lifting Surface Cavitation code (LScav) computes the first iteration of the fully nonlinear
cavity solution for a general three-dimensional wing attached to a non-lifting “center-body” at
arbitrary cavitation number. The flow is assumed to be steady, inviscid, incompressible, and
irrotational (outside of a thin vortex sheet trailing behind the lifting surface). The solution is found
by applying a disturbance-potential-based panel method that involves a numerical solution of
Green’s third identity. The method is described in the context of cavitating propellers in Fine
(1992).

The wing and center-body are assumed to be symmetric about a vertical plane intersecting the
body centerline. The cavity solution represents the first iteration of a fully nonlinear solution. In
order to understand the difference between the first iteration solution and the fully nonlinear
solution, consider a two-dimensional hydrofoil and assume that the cavity length is known. Since
the cavity length is a single-valued function of the cavitation number for all stable two-dimensional
cavities, the cavitation number may not be specified in this canonical problem and, in fact, must be



considered an unknown to be determined as part of the solution. To solve the nonlinear problem,
one must first guess the location of the cavity boundary and satisfy the boundary conditions on that
approximate surface. However, since we cannot say beforehand that our approximate location of
the cavity boundary is the correct one, we can only satisfy the dynamic boundary condition (the
condition that the pressure be constant on the boundary and equal to the cavity pressure) in the
solution. In general, the kinematic boundary condition (the condition that the normal velocity
vanish on the cavity surface) will not be satisfied. However, we may use the kinematic boundary
condition to update the location of the cavity surface.

Since the first guess of the cavity location is arbitrary, it is numerically convenient to first solve
the boundary conditions on the wing surface and, for supercavities, on a zero-thickness sheet
downstream of the wing. To find the nonlinear solution, one simply re-solves the problem with the
new body shape defined from the first iteration (see Figure 13). The fully nonlinear solution is
found when the solution converges to some preset tolerance. In previous work (Fine, 1992),
extensive studies showed that the accuracy of the first iteration solution relative to the fully
nonlinear solution was very good over a reasonably large range of operating conditions. As a result
(and motivated by the significant computational savings of solving only the first iteration) LScav
was configured to compute only the first iteration of the nonlinear solution.

Sample LScav results are shown in Figure 14, which indicates the convergence of the cavity
planform for a fin with a triangular planform and a wedge-shaped cross-section. Table 1 shows the
convergence of the corresponding lift and drag coefficients and the cavity volume. Convergence to
three significant digits occurs with about 1300 total panels. The total amount of memory that is
required for this size problem is roughly 108 MB.

LScav has been validated through comparison of computed lift and drag coefficients to
measurements made in a water tunnel. A sample of the validation is shown in Figure 15.

4 APPLICATION OF SLENDER-BODY-THEORY
This section is based on Varghese, et al, (1997).

In slender-body theory (SBT), the slenderness ratio, €, of the body is defined as the ratio of the
maximum radius to the total length. It is assumed that € << 1 and that the cavitation number and
the inverse square of the Froude number are of order €’In € (Chou, 1974). The axial gradient of the
body-cavity radius should be of the same order as the slenderness parameter, restricting the
analysis to certain classes of cavitators using this approach.

In the following sections, Chou’s formulation is extended to subsonic compressible fluid flows.
Also presented are selected results for an incompressible fluid. Chou’s original method
incorporated terms accounting for an axisymmetric gravitational field, and these have been retained
in the following presentation. Results may be found in Varghese, et al, (1997).

4.1 Mathematical Formulation
The present SBT analysis assumes an axisymmetric body with a conical cavity closure. A salient
cavity detachment point is specified in the model as is shown in Figure 16. The free-stream

velocity, U, is at zero angle of attack. The body length is 4y, the cavity length is /., and the total

length is /. In the following formulation, all lengths are made dimensionless with body length,
velocities with free stream velocity, and potential with body length and free stream velocity.

Incompressible Flow
The total potential is

where ¢ is the perturbation velocity potential. The axial and radial components of the perturbation
velocity are

L2
Yok

respectively.

99
o’ (4.2)

and u, =
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The SBT outer expansion results in Laplace’s equation for the perturbation potential:

o(e )+ 1o =0 .
r 4.3)

For a continuous distribution of sources along the x-axis, the solution for equation 4.3 can be

written as
(&)
- g) +r’ .4)

where ¢(§) is the source strength defined along the axis at location & From the SBT inner
expansion, assuming db/dx = (J(g), the source strength is

o) =-7, 7

d(b)
q(x)=7
dx 4.5)
The kinematic boundary condition,
db
u =—,
dx (4.6)

is formed from the no-flux condition on the body and cavity surfaces. The cavity pressure is
assumed to be constant. The dynamic boundary condition is derived from Bernoulli’s equation:

2(x—1
0 =—Cp=2uy +u,> - (x2 )
Fb

4.7
Here, o is the cavitation number, Cp, is the pressure coefficient, and
A Ueo

=
’ V&l

is the Froude number based on body length. Here g is the gravitational acceleration.

Let { =b and { =h’. Substituting expressions for the radial and axial velocity

components defined at the body-cavity surface, in the dynamic boundary condition, equation 4.7,
results in a non-linear integro-differential equation:

_ 1 pra(§(x—g)de +[@c_]2 _2x-1)

= — 2 1<x </
27 Jo 5 2 dx F =*=5
[(X_g) +Cc]2 b

(4.8)
where b is the cavity radius. Integrating by parts and using equation 4.5 for the source strength
yields (Chou, 1974):
d’¢ d’¢ d¢ d¢
—= —2b ] e b
Fh d¢' ‘ dx dx . (dbc)z _2x-D

Yp__d¢ 1y _
2‘[«’(XE)2+CC 2[\Kx§)2+g+\/(x—e)~’+g \/xz+Cc+ dx F’

(4.9)

With the assumption that the cavity closes as a cone, the above equation can be written for a
conical body as:

T T (5]
dx 2 — 1>

1f_ﬁ_:,r,+i] d¢’ .
2 Jx e+ 29 Jax -+ al E

(4.10)



In this equation, the right hand side is known for a given cavity shape. In the current approach, the
cavity shape is approximated and updated iteratively. With an assumed initial cavity shape,
equation 4.10 is solved for a new cavity shape. For that procedure, the cavity axial length is
discretized into » panels. In each panel, a locally quadratic polynomial is used to approximate C¢,
Varghese, et al, (1997) presents the details of building and solving a system of equeations to update
the discretized cavity geometry.

Pressure and Drag Coefficients for the Case of an Incompressible Fluid

Upon convergence, the pressure coefficient along the body is computed as follows:
dg¢
—-£)d
T [dbb]2 L 20—1)

(7 x) = L/“ 3 2 ’
B x—ef+¢f b

0<x <1.

(4.11)

The pressure coefficient along the cavity is the negative of the cavitation number. The base drag
coefficient, based on the maximum body cross-sectional area, is found by integrating the pressure
coefficients over the body:
Cb
C, = . (I)JC (x)—dx+ c .
b (4.12)

In Varghese, et al, (1997), viscous drag corrections for axisymmetric bodies were developed
based on three different methods: (1) Thwaites” method with a linear velocity profile; (2) Thwaites’
method with a shear function; and, (3) the method of Falkner and Skan. Moderate improvement to
the comparison of the predicted total cavitator drag to experimental data was obtained for certain
cases.

Subsonic Compressible Flow

In this section we extend the previous formulation to the case of compressible flows. Results may
be found in Varghese, et al, (1997). A method is proposed in Kirschner, et al, (1995) for extending
the axisymmetric boundary-element method presented above to compressible subsonic flows.

The outer expansion for the perturbation potential for slender bodies in a compressible fluid
results in the following governing equation (Ashley and Landahl, 1965):

0,
1-M Y. +—<+¢.=0,

where the hatted variables represent the physical coordinate for the subsonic flows. With a

equation 4.13 reduces to Laplace’s

oo

transformation to x =x and r = 37 where B:JI M?
equation. Thus the solution for a continuous source distribution is

(%4
Ox,r)=——
47'5 JA() J(x_ §)2 +B2r2

Here g(x) is defined by equation 4.5. The radial velocity component is given by equation 4.6.
However, the axial velocity component depends on [3 as follows:

4()(r-2)d
3
(-8 +5%2 ]

(4.14)

1

uy (x,r):E

fo

(4.15)
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With the constant.cavity pressure assumption, the dynamic boundary condition is derived from
the compressible Bernoulli equation:

14
2 2 u? %_l
c—,,Mz 1—{1—(y—1)Mm[ux+7’H .

oo

(4.16)

As for the case of incompressible flow, substitution of equations 4.6 and 4.15 respectively for the
radial and the axial velocity components of equation 4.16 yields an integro-differential equation:

7l
{l_w\zﬁ,a}y IR 9(§)(x-¢) g+ &JZ ,1<xs<t,

4r g 2 0T 20 dx
[(x-e7 + B2 | )

Integrating by parts and substituting equation 4.5 for the source strength, the governing equation
becomes

e e ‘ -l
} a” = 4 [I—YM"% a] ! -1
Wa-epepi, M|l 2
d*y dg. dgy
R S &
N R R C) Y S R R (4.18)

For a conical body with a conical cavity closure, this equation becomes

&dﬁ -1 & dge ;
e ge2 4 [ m2 |7 ! dé’ dx
[ = Fil1-5=e | 1] d 2t
Y A VaDLE | 0J(x-8) + B e
(4.19)
Pressure and Drag Coefficients for the Case of a Compressible Fluid
The pressure coefficient along the body is given by
.
d¢y !
M2 L,oae BT
7’2 Cp(x)=|1-(y-1)M2 ngé—frg[d—;) -1, 0<x<l.
(-8 + 8% ]
(4.20)

Using this form to compute the pressure coefficient, the base drag coefficient, Cy,, for the
compressible case can be calculated using equation 4.12.

4.2  Selected Results — Slender Body Theory

The SBT model was used to predict supercavitating flows of both compressible and incompressible
fluids at various cavitation numbers. All the results shown here are for a 10°-cone angle. The
cavity shapes (scaled to show cavities enlarged in the radial direction) for cavitation numbers
ranging from 0.005 to 0.05 are shown in Figure 17 for the incompressible case. The cavity length
increases as the cavitation number decreases, as expected. The predicted surface pressure
distributions are plotted in Figure 18 for different cavitation numbers. This quantity decreases as
the cavitation number increases. Results have been compared with curve fits of empirical data
(May, 1975). In Figure 19, the maximum cavity radius has been plotted, made dimensionless with



respect to the radius at cavity detachment. Figure 19 illustrates an excellent match with
experimental values, particularly at low cavitation numbers where SBT is more valid.

4.3  Summary - SBT
Formulations have been presented for applying Chou’s SBT model to both incompressible and
compressible flows. Selected results have been presented for the incompressible case. Some
comparison with experimental data has been presented.

In Varghese, et al, (1997), additional formulation, results, discussion, and comparison are
presented for the effects of both an axisymmetric gravity field and viscous drag.

5 NUMERICAL FLIGHT AND CONTROL SYSTEM SIMULATION

In this section, which is based on Kirschner, et al, (2001), we describe numerical flight simulation
for supercavitating vehicles. We first discuss the nonlinear forces acting on the cavitator, the fins
(if present), and any portions of the hull that penetrate the cavity boundary during excursions from
the fully-enveloped condition. Next, we describe simulation of vehicle flight, including system
stability and system performance during execution of a banked turn. Without control, some vehicle
configurations can be unstable, whereas a feedforward-feedback strategy can control some
configurations over a range of turn rates.

5.1  Hydrodynamical Model

The behavior of the cavity is central to the dynamics of a supercavitating vehicle. The nominally
steady cavity behavior forms the basis of the quasi-time-dependent model implemented for the
current investigation. This model affects not only the forces acting at the nose of the vehicle, but
also the immersion of the fins and any planing forces due to contact between the body and the
cavity boundary. It is the cavity that makes this dynamical system not only nonlinear, but also
dependent on strong memory effects that link the history of motion to the instantaneous cavity
shape.

The three parameters that characterize time-averaged or quasi-steady ventilated flows are the
cavitation number, the cavity Froude number, and the ventilation coefficient. The cavitation
number is defined in equation 2.11, and has been discussed extensively in the formulations above.
The cavity Froude number (not to be confused with the related Froude number based on body
length discussed above) and the ventilation coefficient are defined as

A
g-r
gd,
(5.1)
and
A
0
CQ :—2,
Vd? (5.2)

respectively. Again, g is the gravitational acceleration. The cavitator diameter is d.. p..and p.
are the ambient and cavity pressures, respectively. ¥V is the vehicle velocity and Q is the

volumetric rate at which ventilation gas is supplied to the cavity. The cavitation number expresses
the tendency of cavitation to occur in a flow, and is thus a principal quantity governing cavity
dimensions. The Froude number characterizes the importance of gravity to the flow, and therefore
governs distortions from a nominally axisymmetrical shape. The ventilation coefficient governs
the time-dependent behavior of the cavity as ventilation gas is entrained by the flow.

For the horizontal trajectories considered in these lecture notes, the cavitation number is very
low (on the order of 0.015 to 0.030) and the cavity Froude number is typically rather high (on the
order of 50 to 100). The cavity is slender, and its maximum diameter is at least 5 times greater
than the cavitator diameter. Cavity tail-up under the influence of gravity is small, but not
insignificant to the vehicle design.
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The nomenclature used for basic vehicle dynamics during the remainder of these lecture notes
is presented in Figure 20. The x-axis is directed forward along the nominal vehicle long axis, y is
to starboard, and z completes an orthogonal system obeying the right-hand rule. The origin of this
coordinate system is located at the cavitator pivot point. Following Kiceniuk (1954), the following
relationships have been employed to estimate the hydrodynamic forces and moment acting on the
circular disk cavitator selected for investigation:

CD(G,OCC)IMECD()(I—FG)COSZ o
1/2pV %4,
CL(G,OCC)IL’ZCC)ECD()O—I—G)COSOCC sinQ
1/2p7% 4,
CM(G,aC):LZ’aC)EO
1/2pV%d. 4. (5.3)

where D, and L. are the drag and lift forces acting on the cavitator, M. is the hydrodynamic
moment, and A4, is the disk area. The drag coefficient at zero angle of attack and cavitation
number, Cpg, is taken as approximately 0.805 based on empirical data (May, 1975).

Various analytical, numerical, and semi- and fully-empirical models have been developed that
provide estimates of the maximum cavity diameter, d,.., and the cavity length, ¢.. The

analytical formulae of Garabedian (1956) provide useful and reasonably accurate approximations
for investigation of vehicle dynamics:

Arax _ CD(G;O)
dc o (5.4)

and,

Lo _ |Cplo0) 1
de o o (5‘5)
For purposes of time-domain simulation of vehicle dynamics, it is desirable to use simple

models. In a cylindrical-polar system with coordinates x, r, and 6, the nominal axisymmetric
shape can be approximated as:

1
Te  da {1_[x/dc—léc/2dc )Zr“‘

de  2d. (.12d,

(5.6)

where r.(x,0) is the cavity offset (Miinzer and Reichardt, 1950, derived from a low-order potential
flow model).

The effects of gravity and turning on this generalized ellipsoidal cavity shape can be
approximated as a distortion of the line of centers (y.z. ), described by

2
- 1 Aturn X
yc(x) T . s | e

5?7 g 4
(5.7a)

(5.7b)



where agm 1s the turn acceleration and a, 1is the tail-up acceleration of the cavity, here

approximated using the semi-empirical formula recommended by Waid (1957). A binomial
expansion (retaining the second term) has been used to simplify the term associated with turning,
applying the principle of independent development of cavity sections (Logvinovich, 1985) and
assuming that the cavitator traces a circular path in a horizontal plane. Although the distortion of
the cavity line of centers due to turning and gravity has been considered, distortions associated with
cavitator lift have been ignored. Cavity foreshortening has also been neglected, and distortions of
the cavity sections from their nominal circular shapes have been ignored for the current
investigation. Under these assumptions, the cavity locus of section centers is coincident with the
cavitator trajectory.

Equations 5.7 apply to a steady horizontal turn with gravity acting in the vertical direction.
Although generalization to more complicated trajectories would not be difficult, the current
formula provides insight concerning the behavior and limitations of a supercavitating vehicle in a
turn. The consistent formulation shows the relative influences of turning and gravity, both of
which become increasingly important at low cavity Froude numbers. To the order of terms
retained in equations 5.7, the locus of cavity section centers is quadratic in the axial coordinate.

The importance of cavity distortion in high turn rates is apparent in Figure 21, which presents
results for an extreme turn (in this case, a 5-g turn that is probably impractical, but is illustrative of
the cavity-body interactions important to the problem). The nonlinear behavior is clear from this
figure. Firstly, as the cavity distorts from a nominally axisymmetric configuration, the immersion
of the fins into the ambient liquid outside the cavity becomes asymmetric. Therefore, the couple
associated with symmetric or anti-symmetric fin trim will result in nonlinear system response.
Secondly, a system designed for close envelopment of the vehicle by a nominally axisymmetric
cavity (or even one designed for cavity tail-up in straight and level flight) will be subject to
nonlinear forces associated with afterbody planing.

Only the most essential aspects of the unsteady hydrodynamics have been modeled. Self-
pulsation of the cavity has been ignored, but changes in cavity shape due to cavitator motion have
been taken into account via a convolution scheme. The fin forces are evaluated at each time step
via a look-up algorithm. Thus, the three basic cavitating fin flow regimes (base- and partially
cavitating and supercavitating) contribute to the unsteady fin forces, but various higher-order
hydrodynamic effects in the evolution of the fin cavity are not modeled. Most importantly,
hydrodynamic added mass effects have been ignored.

Secondary flows — notably, those due to the fins and to afterbody planing — have been ignored
in the current effort, although the theory used to estimate the afterbody planing forces accounts for
the lowest-order effect of the spray jet.

In the nominal condition of straight and level flight, the supercavitating vehicle configurations
of interest in these lecture notes are supported in the vertical direction by a lift force acting on the
cavitator and by a combination of planing and lift on the fins near the after end of the vehicle. The
optimal support by afterbody planing forces has not yet been determined with certainty, although
the results presented below are enlightening. This secondary function of the cavitator as a lifting
surface is essential to operation of a supercavitating vehicle. Since virtually no lift is provided by
the gas-enveloped hull, the vehicle weight must be supported by the control surfaces both forward
and aft of the mass center. It is natural to provide the forward lift vector by orienting the cavitator
at an appropriate angle of attack. Moreover, accounting for changes in vehicle mass and mass
center as fuel is consumed, and maintaining optimal vehicle orientation with respect to the cavity
during a maneuver, require that this trim angle be variable and controlled.

The forces acting on the fins were predicted using a fully three-dimensional boundary-element
method of the type described above, supplemented with a viscous drag correction.

Afterbody forces in the case where planing on the cavity surface occurs were computed using
an extension of Wagner planing theory developed by Logvinovich (for example, 1980). The cavity

9-21



9-22

in way of the planing region is approximated as a cylindrical free surface. The pressure force
normal to the inclined longitudinal axis of the cylindrical hull is given by

2

k= p 72 Visin & cos O b+ ho 1- 4
r, + 20 By +A (5.8)

where: r, is the hull radius (assumed to be constant over the planing region); 7., 03, and A are
(respectively) the cavity radius, the angle of attack between the longitudinal axes of the body and
the cavity, and the difference between the cavity and hull radii (all averaged along the planing
region); and Ay is the immersion depth at the transom measured normal to the cavity centerline.
Similarly, the moment of pressure forces about the transom can be expressed as

2
MO =7 p 702 V2 0082 &b ML
T+ 20y By +A (5.9)
A viscous drag correction was applied for the current investigation. Forces on the blast tube were
neglected, since the fluid outside the time-averaged cavity boundary in that region is characterized
by a significant void fraction, so that the overall planing forces acting on the reduced sectional area
are expected to be rather small.

5.2 Candidate Vehicle Configuration

Several design issues must be addressed to completely understand the dynamics and control of
supercavitating vehicles. One concern is the optimal allocation of fin lift relative to planing force
to support the vehicle afterbody. A related question is the need for fin support: if stable flight can
be maintained with the afterbody completely supported by the planing force, the elevators and their
attendant drag and complexity become unnecessary.

Simulation was conducted on a vehicle with the following characteristics: 4.0 m in length,
0.2 m in diameter, and with a cavitator diameter of 0.07 m. The fins were located 3.5 m aft of the
cavitator, and were swept back 15°. Although the mass properties of the vehicle will change as the
rocket and ventilation fuels are consumed, they were assumed constant for purposes of the current
analysis. A cruciform fin arrangement has been assumed: A pair of horizontal elevators provide
some component of steady lift to support the afterbody and would be important to depth changes,
while a pair of vertical rudders stabilize the vehicle in roll, but are otherwise deflected only during
maneuvers.

As is discussed in Kirschner (2001), under certain conditions, a banked maneuvering strategy
might be advantageous for a self-propelled supercavitating vehicle. This strategy was adopted for
the investigation described herein.

5.3  Simulation of Underwater Flight

The current investigation focused on the simplified system of Figure 22, for which high frequency
hydrodynamic noise excitation and other noise sources have been ignored. Moreover, it is assumed
that knowledge of the system state is accurate, eliminating the requirement for a state estimator.
However, the nonlinearity of the vehicle-cavity system has been retained. Nonlinearity enters the
system via the vehicle, fin, and cavity behavior, due both to the nonlinear force coefficients and to
memory effects associated with cavity evolution. Control has been implemented via a linear-
quadratic regulator (LQR). Cavity memory effects and the discontinuities in the force coefficients
require incorporation of the feedforward model (discussed below) to maintain acceptable system
performance.

For the simplified system, the input to the regulator is the error vector, x = x4 — y, computed
as the difference between the commanded state vector, x4, and the corresponding actual state
vector, y. Both the actual and commanded state vectors have the form

0
{ . Y z ¢ v « displacements

surge sway heave roll pitch yaw

T
Uu v w
rates — P vq g
surge sway heave roll pitch yaw



However, several of these states might not be measured on a vehicle. Thus, for the simulations
discussed below, several of the state variables were eliminated from the system. Typically, a 7-
state system was investigated, assuming that both rates and displacements in roll, pitch, and yaw
are available from an inertial measurement unit and that some measurement of vehicle depth, z,
can be obtained.

A classical regulator would provide a control vector, u, directly to the hydrodynamic control
effectors (in this case, the fins and the cavitator):

Z41 Uy Uus Uy Us T
"=
starboard lower port upper cavitator | (5.10)

However, the control vector of interest involves both the feedback output from the LQR, uy, and
output from the feedforward model, wuy :
u=uy +ur

(5.11)

Prior to flight simulation of a supercavitating body, the thrust and nominal speed are specified.
Values of the state and control vectors are then determined for four basic flow conditions:
e Two trim conditions: fin-supported with pitch equal to zero, and planing-supported with fin
deflection (relative to the vehicle axis) equal to zero; and, for each trim condition,

¢ Two maneuvering conditions: straight and level flight, and level turning at a specified constant
turn rate.

Determination of these equilibrium conditions involves a nonlinear root search. In consideration of
the discontinuity that can occur at the angle where planing first occurs, a Nelder-Mead scheme has
been adopted.

The feedforward model investigated in this effort is specialized for supercavitating vehicle
dynamics. A scheme has been selected for which the system is regulated about one of four distinct
fixed points. The point selected depends on the user-specified operating condition. The first two
fixed points are defined by the nominal condition of straight-line flight for either fin or planing
support of the afterbody. The other two are similar, except that they are selected as equilibrium
conditions for steady turning in the horizontal plane. Thus the output from the feedforward model is

u, fin supported, zero pitch, straight flight
u, planing, zero fin deflection, straight flight
ug € L
P , finsupported, banking pitch, turn rate @y (5.12)

u, planing, zero fin deflection, turn rate @y

and feedback control is optimized to regulate motion about one of these equilibrium conditions as
the vehicle traverses its commanded trajectory.

The nonlinear equation of motion involves not only the present state, but also the history of
cavitator motion, ¢(7) :

x=flx,ct—7)u)
y=glx)

where 7 represents the delay between motion at the cavitator and action along the afterbody. For
each flow condition, s, the state-space model for the simplified system is defined in the usual
manner as:

x=A B
x sX+Bgu se{l,-~,4}
y=Csx+Dsu . (5.13)
The Jacobian matrices are computed numerically prior to flight simulation as (for example)
Ay = i sefl,---.4}
ox , (5.14)

where the indices 7/ and j vary from 1 through 12 for the complete state vector and from 1 through
5 for the control vector in each flow condition. For the simplified system, the Jacobian matrices in
the second of equations 5.13 are simply

C,=Isef,- -4} (5.15)
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(the identity matrix), and

D, =0se{,--.4} (5.16)

Regulation for the general LQR is measured by the quadratic performance criterion

J(u): T (xTQer 2xTNub +ubTRub)dt
= » (5.17)

where the user-specified weighting matrices, Q, N, and R, define the trade-off between
regulation performance and control effort. For the current investigation, the cross-weighting
matrix N was taken as zero, as were all off-diagonal elements of the state and control weighting
matrices, Q and R. A MATLAB® Control System Toolbox routine is used to determine the gain
matrices, K, that minimize the cost function, Jiu), for use in the state feedforward-feedback
control law (MATH WORKS, 1998) for each of the 4 fixed points considered. The control law is
then expressed as:
u=up-K;x seil,--4
fs s { } ( 51 8)

A substantial effort was devoted to testing various combinations of the weighting matrices Q and
R to achieve acceptable performance, although a more systematic and rigorous effort is warranted.
The weighting and gain matrices are all computed prior to flight simulation.

A 4™ order Runge-Kutta scheme was used to integrate the equations of motion in time. At
each time step the cavity geometry is updated to account for the motion of the cavitator. The forces
acting on the cavitator, fins, and afterbody are then updated, and vehicle accelerations in each of
the 6 degrees of freedom are computed. The state and error vectors are updated. The control
vector is then updated using the gain matrix appropriate to the specified desired operational
condition and the control equation is applied.

54 Selected Results - Simulations

For all cases discussed below, the operating speed and cavitation number were 75 m/s and 0.03,
respectively.

Figure 23 shows the total lift margin (the difference between the total lift and the vehicle
weight) as a function of vehicle pitch and elevator deflection angle. The cavitator angle for each
curve was selected to provide equilibrium for a pitch angle of zero. Equilibrium is achieved in the
fin-supported case at elevator deflection angles between approximately 0.30° and 0.55° below
elevator deflection angles or approximately 0.30° the afterbody is primarily supported by planing
forces. Note the discontinuity in lift curve slope when afterbody planing first occurs (at a pitch
angle of approximately 0.23°); this represents a tremendous increase in the effective system stiffness
and the characteristic response frequencies. The small fin deflections required to produce a
substantial change in the forces acting on the body might present an additional challenge for control.

The open- and closed-loop eigenvalues of the system, linearized about the fixed points
associated with the fin and planing supported cases for straight-line flight, are shown in Figure 24.
For both types of afterbody support, the uncontrolled system has one unstable mode. Preliminary
analysis suggests that this is a corkscrew motion associated with cavity tail-up under the influence
of gravity: roll and sway are unstably coupled due to asymmetry in the fin immersion as the body
rolls about its long axis, which is eccentrically located with respect to the line of cavity centers in
way of the fins. This effect can be eliminated in the controlled system, provided some
measurement of depth is available; if not, the unstable mode is present even for the controlled
system. As expected, the most important remaining difference between the controlled and
uncontrolled systems is a significant increase in the damping of each mode in the controlled case.
Similarly, the primary difference between the fin and planing supported cases is a significant
increase in the frequency of the oscillatory modes in the planing supported case. In all cases,
several lightly damped modes are present.

The vehicle motion predicted by time-domain simulation of free decay in pitch for the fin-
supported case in straight and level flight is presented in Figure 25. Two types of behavior are
presented: essentially linear behavior associated with a small initial pitch rate perturbation of 1%s,
and the clearly nonlinear behavior due to a large perturbation of 20°/s. In both cases, control is
required to recover from the perturbation and return to the original depth. More interestingly, the



linear behavior is non-oscillatory for both the controlled and uncontrolled cases, whereas, in the
nonlinear case, the perturbation initiates a rather violent pitch oscillation at a frequency of
approximately 9.5 Hz that is modulated by a second, gentler, higher-frequency oscillation. The
shapes of the peaks and troughs indicate that the vehicle is skipping off the bottom of the cavity in
the nonlinear case.

Simulation of vehicle motion in steady, planing-supported, straight and level flight predicts
behavior such as that shown in Figure 26. 1t can be seen that pitch increases with time, but that a 7-
state controller both eliminates the tendency of the vehicle to dive and reduces the violent tail-slap
behavior. The frequencies characterizing the two types of response are markedly different: the
uncontrolled case is dominated by a relatively long-period skipping mode, whereas control
eliminates this mode, leaving the higher modulating frequency. The planing force history indicates
that skipping occurs in both cases — apparently the controlled response during the planing portion
of the cycle is sufficient to mitigate the unsteady cavity behavior in such a manner that the
afterbody excursions are not so extreme.

5.5  Summary — Simulation

This section presented strategies for the control of the highly coupled nonlinear system
comprising a supercavitating vehicle. A simple hydrodynamic model was implemented for
simulating the behavior of such a system. In consideration of the nature of the forces acting on a
gas-enveloped body, and in order to maintain mechanical simplicity of the cavitator, a banked
maneuvering strategy was investigated. Results of dynamical simulation for a specific vehicle
were presented both for uncontrolled flight and with LQR-based feedforward-feedback control.

The system behavior is dominated by the distinct change in the nature of the forces as the
afterbody moves between a planing and a non-planing condition. The system eigenvalues strongly
depend on the type of afterbody support specified for vehicle operation, but that (under the
assumptions made for the simplified hydrodynamics model) a 7-state controller can eliminate the
most undesirable behavior in either case. Additional discussion, including description of the
simulation of banked maneuvers in steady turns, may be found in Kirschner, et al, (2001).
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Figure 1. Two classes of supercavitating high-speed bodies: (a) Free-flying projectiles; (b) Self-propelled
vehicles

Figure 2. Free-Body Diagram for Undersea Vehicle Drag Analysis
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Figure 3. A Boundary-Value Problem for Ideal Supercavitating Flow.
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Figure 4. Physics problem for axisymmetric supercavitating flow.
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Figure 5. Boundary-value problem for axisymmetric supercavitating flow.
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Figure 6. Body-cavity profiles for a 15° cone for dimensionless cavity lengths shown (scaled for viewing).
The corresponding predicted cavitation numbers (decreasing with length) are 0.501, 0.070, 0.038, and

0.017
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Figure 7. Predicted drag coefficients versus cavitation number for a 15° cone at dimensionless cavity
lengths shown. The empirical curve fit of May (1975) is based on results of experiments by various
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Figure 8. Predicted cavity diameter versus cavitation number for a 15° cone at dimensionless cavity
lengths shown. The empirical fit of May (1975) is based on results of experiments by various researchers.
Solid markers are based on the computed drag coefficient; open markers are based on the drag coefficient

given by the empirical curve fit of May (1975). The function of diameter is given in the text at
equation 3.18.
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General cavitator shape
(elliptical in this example)

Figure 11. Normal velocity at start-up, with a homogenous initial condition for the cavity potential and
an assumed initial geometry.
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Figure 12. The three regimes of cavitating wedges, fully-, partially- and base cavitating.
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Figure 13. Sketch demonstrating the difference between the first iteration and nonlinear solutions.
LScav solves for the first iteration solution.
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Table 1. Sample LScav results showing convergence of cavity volume, lift, and drag coefficients with
number of panels

# Panels Volume Cy Cp
800 1.218 .1032 .0174
1040 1.129 .1024 .0174
1300 1.106 .1031 .0174
1560 1.104 .1036 0175
03 0.12
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Figure 15. Comparison of measured and computed lift and drag coefficients (measured data provided by
D. Stinebring, ARL/PSU)
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0.25
0.20 e e
0.15 A BERRLE < Cavitation :
- . Number "o
[ 0.005 .
0.10 ~N— ------ 0.01
\ ———=0.02 \
\ \ ———-003 '
0.05 | \ 0.04 .
| '. 0.05 |
0.00 ‘ 1 | I :

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0
Axial Distance

Figure 17. Cavity shapes for different cavitation numbers for axisymmetric supercavitating flow past a
10° cone in an incompressible fluid.
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Flight path

Figure 20. Nomenclature

Figure 21. Cavity behavior in an extreme turn
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Figure 22. Simplified dynamical systems model of a supercavitating vehicle.
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Figure 23. Lift margin as a function of pitch and elevator angles.
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Figure 24.

Open- and closed-loop eigenvalues for two modes of afterbody support.
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Initial Perturbation in Pitch Rate = 1 °/sec
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Figure 25. Fin-supported straight and level flight with small and large perturbations.
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Figure 26. Planing-supported straight and level flight with an initial pitch rate perturbation of 0.01%s
with 7-state control.



