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Extensions: Extrapolation Methods for CAD

Hans J. Wolters

Abstract. Many operations within a solid modeling application, notably
applying thickness (shelling) or blending edges (filleting), encounter diffi-
culties during topology resolution. In order to create a solid object, certain
faces have to be intersected but the geometry is such that no intersection
curve can be computed. The solution is to "extend" one or both faces.
This means that one has to extrapolate the underlying curves or surfaces.
This operation causes instability since extrapolation is inherently an un-
stable process. An additional difficulty is the selection of a strategy to
compute the extension amount. Furthermore, there are additional restric-
tions relating to continuity across the extension boundary. In this paper I
will illustrate by examples some modeling situations where extensions are
necessary. I present the methods currently used, and illustrate their ad-
vantages and disadvantages. Subsequently, I will demonstrate a solution
for primitives such as cylinders, cones, spheres and tori. I will conclude
by suggesting approaches which could avoid some of the current pitfalls.

§1. Introduction

At present almost all engineering design tasks are performed with the help of
a CAD system or - more generally - mechanical design automation (MDA)
software. Most all of the commercial modelling packages converged to certain
standard respresentations. The geometry is represented as NURBS curves
and surfaces, where truly rational representations are used only for primitives
such as circular and elliptic arcs, cylinders, cones, tori and spheres. Most
modelers also moved from strictly CSG representations to a hybrid model
where the topology is expressed as a BRep, and the sequence of operations is
stored in a CSG-like tree. As mentioned above, our focus is on solid modelling
applications where it is essential to maintain a valid topological solid after each
operation. We restrict ourselves here to the manifold setting.

In more technical terms we define a solid as a 3-manifold with a compact
boundary which is consistently oriented. This allows us to include objects with
finite surfaces without excluding objects with infinite volumes. The reader
who is unfamiliar with these concepts should consult a textbook on solid
modelling such as [2,3] or the excellent survey [4].
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Fig. 1. Offsetting outward results in free edges which need to be resolved.

The requirement that the validity of the solid be maintained after any
operation is a source for many of the robustness issues encountered in solid
modelling. For example, it is often difficult to find a crisp intersection between
surfaces even though the intersection curve is needed to close the solid. In
this article I will focus on the problem of extensions. In a nutshell, we often
need to extend surface patches in order to create intersections. This extension
operator is equivalent to performing extrapolation. Very little information
can be found in the literature regarding this topic; the notable exception is
[5]. This survey article is meant to fill the void.

The outline of this article is as follows. In Section 2, I will describe three
operations which almost always lead to the need for extending curves and
surfaces. Section 3 will present the approaches used in practice and discuss
their advantages and disadvantages. Furthermore, I will describe one mod-
ification which leads to significant improvements when extending quadratic
B~zier patches such as cylinders, cones, spheres and tori. In Section 4 we
will suggest alternative approaches to circumvent the need for extensions and
encourage some future work.

§2. Extensions in Solid Modeling

The need for extensions arises quite frequently when modeling parts. I will
explain the need for extensions when performing three of the most common
operations, namely

"* Shelling,

"* Blending,

"* Drafting.

These three operators are local operators, meaning that only a region of
the solid is modified. Shelling is the process of applying thickness to a part.
The steps to be performed are as follows: The intial step is to offset all the
surfaces with prescribed offset distance, the thickness. This distance can vary
considerably. The result is illustrated in Figure 1.
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Fig. 2. Blending with features present: The edge denoted by an arrow in the
left figure is filleted. The face denoted by the arrow in the right figure
needs to be extended.

In Step 2, surfaces need to be intersected to form edges. Here extensions
might be needed in order to compute crisp surface intersections. Trimming
back the surfaces in Step 3 yields the final result. The alert reader might
have noticed that the true offset is the Minkowski sum, and vertices should
really correspond to arcs. This would avoid computing extensions altogether.
However, this result is not desired in practice.

Blending or filleting is the process of rounding sharp edges. Hereby an
additional face is constructed which meets the adjoining faces with G1 con-
tinuity as illustrated in Figure 2. This surface is typically constructed as a
loft interpolating circular or elliptic cross sections. Extensions are needed for
vertex resolution when multiple filleted edges meet at a corner or for extend-
ing features when the blend face interferes with an existing feature. For more
information on blending, see the survey article by Varady et al. [6].

A draft operation in solid modeling consists of changing the solid such
that certain faces are slightly angled, see Figure 3. This is necessary for
plastic parts manufactured by injection molding. In order to be able to pull
the part out of the mold, there needs to be some room such that the faces
do not stick to the mold wall. Hence this operation is mandated purely for
manufacturability. Extensions are needed here as well as Figure 3 illustrates.

Fig. 3. Draft: The angled face replaces the front face and, hence the bottom
face needs to be extended.
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In conclusion, one can see that the success of these operations depends
on being able to produce the geometry which is required for the successful
resolution of the topology. Specifically, this means that one has to be able
to produce intersection curves. The vast majority of failures can be traced
to the failure of producing these curves due to bad geometry generated by
extensions.

§3. Extension Methods

In this section we will survey the extension methods which are typically em-
ployed in commercial systems, and we will evaluate their strengths and weak-
nesses. Additionally, we will present a modification which allows to extend
quadric surfaces while maintaining their current parametrization. Extensions
need to fulfill certain requirements to be useful. Special surfaces such as cylin-
ders, cones, spheres, tori should be maintained. Ideally the existing degree of
continuity across the extension boundary should be kept as well; however, this
requirement is mostly relaxed and only G1 continuity is required. The shape
of the resulting surface should be predictable, and the extensions should result
in well-defined surface intersections. Note that the requirements differ in one
crucial point: the first two requirements can be enforced, whereas the last two
can not when using extrapolation based methods. We will revisit this topic
in Section 4.

Subsequently, we assume as given a B-Spline surface s(u, v) of degree d
with control points 8ji,i = 1,... ,n,j = 1,... ,m and knot vectors u and v.
We assume the parameter domain of the surface to be [a,, bl] x [a2 , b2]. We
assume that we want to extend across the boundary u = b, such that the new
bound is fi.

Natural extension

The natural extension approach is the straightforward extrapolation approach
in a B-Spline or B~zier setting. Consider subdivision of a given B6zier curve
c(t) with t E [a, b]. It is known that the control points for any subcurve
d(t) with t E [a,s] are given by the intermediate points of the de Casteljau
algorithm:

di = c(s).

Of course the formula is still valid if s is lying outside the original parameter
interval, here [a, b]. Natural extension is performed by applying this formula
with a value 9 V [a, b]. This results in extrapolation. Furthermore, the control
points are not computed as convex combinations of the previous layer control
points as before; hence attributes like the convex hull property are lost. The
derivation presented here directly generalizes to the setting we are considering.
In the B-Spline case the control points are the intermediate points generated
by the de Boor algorithm with the new extension parameter ft. Pseudocode on
how to compute these intermediate points can be found in the book by Farin
[1]. We can easily extend this method to surfaces by repeatedly applying the
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Fig. 4. Construction of linear extensions.

curve algorithm to rows or columns of control points. It is worthwhile to point
out that this method is inherently very unstable. However, it is often used in
practice even though it should be avoided.

Linear extension

The simplest form of extension is using the derivatives across the extension
boundary to infer the new geometry, see Figure 4.

This method is known as linear extension. In our case we extend each row
of control points linearly in the direction given by

v)i ý dn,i -- dn-l,i.

Note that now one additional segment is being created, and hence we increase
the number of control points in each row. Typically, we have the freedom to
achieve C1 continuity by appropriate scaling. If we define

a U - Un+d+1

Un+d+i - Un+d

then by setting
dn+,,i = dn,i + avi,

we have achieved C1 continuity at u* = Un+d+l as can readily be verified. If
we denote as D+ the partial of s at u* computed from the (new) right segment
and with D- the corresponding partial computed from the left segment, we
derive:

D+ dn+l,i - dn,i Vi f - Un+d+l Vi D.
U - Un+d+l U^ - Un+d+l Un+d+l - Un+d Un+d+l - Un+d

The other control points are usually placed equidistantly on the tangent line.
Again rational surfaces are treated in homogeneous space, and it is possible
that negative weights are created. One can remedy this by inserting knots
appropriately.
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Fig. 5. Reflection of control points.

Reflection extension

This method has been introduced in [5]. The idea here is that more predictable
results can be obtained by just mirroring the existing geometry across the
normal plane. This is shown in Figure 5.

The basic operation of reflecting control points suffices when dealing with
nonrational surfaces. The basic reflection operation can be formalized as fol-
lows: We again define vi as in the case for linear extensions. Let us denote
by bi the normalized vector. Then we have

dn+j,i = dn-j,i - 2 < i)i,dn-j,i - dn,i > i)i, j = 1,... K,

where K is the number of new control points to be computed. It can be
easily seen that G 1 continuity is preserved across the boundary u = b. A
more subtle point to consider is continuity in v across a knot vi with full
multiplicity. If the original surface is C' continuous across vi, we would like to
ensure that the new part of the surface fulfills that condition as well. Control
points generated by the simple extension equation above will not inherit C'
continuity from the generating geometry. This is due to the fact that the
normalization introduces a nonlinearity into the reflection formula. Only if
we have the same reflection plane for the three rows affected is C1 continuity
across v, achievable. G1 continuity is achievable if one chooses the weight
functions in the continuity equations appropriately. In the case of rational
surfaces, more work is required in any case. The continuity conditions for
adjacent rational patches are somewhat complex: Suitable weights and scalar
values have to be computed by inserting the model space control points into
the equations for G1 continuity as stated in [5]. In addition, it is now not clear
that G' continuity across a knot vj with full multiplicity can be obtained. The
authors in [5] ignored the complications arising by this configuration. Note
that this problem is closely related to twist incompatibility issues when one is
computing the new corner points.

Extending special surfaces

In most CAD systems, rational surfaces are only used to represent surfaces
such as cones, cylinders, spheres and tori. In this case, one can create an
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extension surface which is again a special patch by solving a simple system
of equations without invoking the machinery of rational continuity conditions
across boundaries: We make use of the fact that we are dealing with quadratic
Bezier patches. So let us assume that we are given a biquadratic patch p(u, v)
which again shall be extended across u = b. Let us denote the new patch by q.
The boundary control points are generated by simple reflection in model space.
The weights are just copied, hence we guarantee positive weights. It remains
to generate the point q11.We make use of the fact that the two end derivatives
of the isoparametric curve formed by qo1 ,q11 , and q21 are the same up to a
scale factor as the corresponding derivatives of the curve denoted by Pol,Pl1,
and P21- Furthermore, the scale factor A is identical for both derivatives. This
gives rise to a simple system of 6 equations in 4 unknowns: Let

Op w01u4 - U1Do F= (uu( =av o
OWll 2

1 Op b,v) W21 U4 - U1

Then we obtain the equations

ADo - q11 = -q01,

AD1 + q11 = q21.

We know that a solution must exist, and by looking at the system, we can
readily determine A - for example by adding equation 4 to equation 1. Having
determined A, q11 follows trivially.

Hence we have presented an approach to compute the correct control
points in the circular direction of a special surface such as cone, cylinder,
sphere or torus.

Summary

We have presented the three commonly used extension methods. Let us sum-
marize the advantages and disadvantages of each: Starting with the natural
extension, its advantages are that maximal continuity is preserved and spe-
cial surfaces retain their characteristic. The disadvantages are that depending
on the original surface parameterization the results can be undesirable even
when only extending a relatively small amount. Furthermore, since extension
is performed in homogeneous space, weights can easily become negative even
for special surfaces.

Linear extension is the most predictable met1'od in that it resembles a
ruled segment that joins the original surface with '-f or C1 continuity. How-
ever special surfaces are not preserved, and again we might produce negative
weights when dealing with rational surfaces.

Reflection extensions yield positive weights for rational surfaces. The
resulting surface is related to the original surface in a predictable fashion, at
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least for a modest extension amount. It is possible to create G2 continuous
surfaces across the extension boundary. However, one might lose continuity
in the other direction when knots with full multiplicity are present.

The combination scheme derived above combines reflection extension with
a direct computation of inner B~zier points. This method has been developed
especially for the extension of rational quadratic B1zier patches, and hence it
preserves special surfaces without introducing negative weights.

Implementation issues

In order to implement a topology resolution system based on extensions, there
are some other complicating factors to consider. First, the amount of exten-
sion has to be determined. In general this amount is given in parameter
space. Depending on the parameterization, parameter space and model space
might not correspond well. As a consequence, it is difficult to even predict
the extension amount in model space without careful analysis of the given
parameterization. Usually one needs to perform extensions in a loop by ways
of callbacks. The process flow is as follows:

1 ) extend,

2 ) test for intersection,

3 ) if intersection found then process, else goto 1).

Of course, it is necessary to monitor this iteration. When finding an
intersection curve requires extensions of significant amount, it is likely that
the result is not acceptable. This is particularly true for shelling operations.
When dealing with trimmed surfaces, the desired result might differ: In some
cases it might be valid to extend the untrimmed surface; in other cases the
trimming information must be preserved.

§4. Alternatives

We have seen that extension approaches are the weak link in topology reso-
lution algorithms. Inherently, the problem of extrapolation is ill-defined. An
alternative solution worth exploring is to reverse the process and to establish
the desired intersection curve first. Given this intersection curve and option-
ally a tangent ribbon, one can construct a cubic B1zier patch blending between
the intersection curve and the extension boundary and tangents constructing
a G1 cont auous extension. Variations of this approach are possible as well:
one might even prescribe four boundary curves and construct the extension
patch by Coons blending techniques. If one needs to establish a vertex by per-
forming multiple intersections, one could again establish intersection curves
first, and then perform additional intersections to establish the vertex. To
the authors knowledge, such an approach is currently not implemented in any
commercial modeler.
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§5. Conclusion

This survey article presented the methods used for extending curves and sur-
faces. Since they are all based on extrapolation, the algorithms are unstable
and can lead to undesirable results. As a consequence, the topology cannot be
resolved, and a valid solid cannot be produced. This leads to the failure of the
entire local topology operation such as shelling, blending or drafting and loss
of productivity for the end user who typically has to perform time-consuming
steps to get the desired result. We have shown that all the algorithms have
inherent weaknesses, and we have put forward a suggestion for alternative ap-
proaches. It is the authors hope that this paper motivates some much-needed
further work in this area.
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