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Surface Interpolation of Non-four-sided and
Concave Area by NURBS Boundary

Gregory Patches

Junji Sone, Kouichi Konno, and Hiroaki Chiyokura

Abstract. Subdivision methods are widely used for surface interpola-
tion of a non-four-sided area. Using this method, smooth surface shape
control of multiple surfaces is difficult. Therefore, we used the trim surface
for interpolation of a concave area, but shape control of the trim surface
was also difficult. In this research, the surface interpolation method of
non-four-sided (over 4 sided) area uses a single NBG (NURBS Boundary
Gregory) patch. Moreover we apply this method for concave areas and
study the ability of interpolation. Interpolation of one-sided and two-sided
concave shapes is also considered. As a result, one-sided concave area can
be interpolated smoothly for complex cases. Two-sided cases need further
study.

§1. Introduction

Catmull-Clark [1] and Doo-Sabin [5] subdivisions are widely used to inter-
polate a non-four-sided area. This method increases the number of surfaces.
Designers must modify the non-four-sided area, observing the contour curves,
silhouette pattern and highlight lines [13] when modeling the outer shape of
products. Surface shape control is more difficult for multiple surfaces, which
are generated by subdivision, because it corrects several surfaces at the same
time. Moreover, if we apply Catmull-Clark subdivision to concave areas, part
of the inner surface twists and protrudes from the boundary curves. Then,
the trimmed surface is commonly used for concave area interpolation. Bound-
ary curve of trimmed surface must coincide with inner surface shape. If we
modify the trimmed boundary curves, surface shape must follow the change
in boundary curves precisely. This modification is very difficult. The Ver-
tex Blending method [6,2] is proposed to interpolate the non-four-sided area
by a single patch. It is also difficult to apply this method for concave area
interpolation.
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In this paper, we propose the surface interpolation method using a single
NURBS boundary Gregory(NBG) [14,8] patch for non-four-sided areas and
concave areas. Applying this method to concave area interpolation, selection
of the four edges is important. Our basic idea is that smooth streamlines make
smooth surfaces. Smoothness of streamlines would be influenced by the con-
struction of four edges. Therefore, we propose the evaluation parameters to
evaluate the smoothness of streamlines. Then, we develop the edge construc-
tion method using evaluation parameters and apply this method to one and
two-sided of the concave area. As a result, single NBC patch can interpolate
non four-sided-area, including concave shapes, allowing the surface shape to
be modified flexibly.

§2. Surface Construction of NBG Patch for Non-four-sided Areas

2.1 Abstract of NURBS boundary Gregory patch

Boundary curves of the NBG patch are expressed as a NURBS [15] curve.
This patch is an extended general boundary Gregory patch [9], constructed
from three sub-patches and calculated by following equation:

S(uV) = Su(uV) + Sv(u, V) - Sc(U,v) (1)

S' is defined by the boundary curves S(0, v) and S(1, v) and their cross bound-
ary derivatives Su(0, v) and Su(1,v). The boundary curves and the cross
boundary derivatives are expressed by a NURBS. Similarly, S v is represented
by boundary curves S(u, 0) and S(u, 1) and the cross boundary derivatives
Sv(u,0) and Sv(u, 1). S c is called a common surface S' and S', which is a
cubic rational boundary Gregory patch [3]. Detailed surface construction is
described in the reference paper [14,8].

2.2 Abstract of surface interpolation of non-four-sided areas

In this subsection, a surface interpolation method using NBG patch for non-
four-sided (over 4 sided) areas is described. We explain the continuity correc-
tion method in the next section.

2.2.1 Sub-patch generation of Su

Fig. 1 shows an interpolation method of pentagonal area. Here the u-direction
order of S' and the v-direction order of S' are cubic. The subdivision method
of S u is described in this figure. First, the new point P 12 is generated by
dividing the edge at the same parameter point of C O vertex P11. Next, a
straight line is generated from P 1 1 to P 12. The vector V" is calculated by
multiplying 1/3 to the vector from P 11 to P 12 . The plane PL 1 is generated

from the tangent vector of boundary curves Vull and Vu2 1. V, 1 ' is derived
by projecting V"' to plane PL 1 . If continuity is more than G 1 at point P 12,

Vu17' is calculated by a weighted average of the tangent vector V, 14 and VU24

using the P 12 parameter value. Occasionally, the length of V u 17 and V' l8
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Fig. 1. Surface interpolation method for pentagonal area using a NBG patch.

are much different. In this case, the control polygon decided by PU, P 12,,
V u l , V u 17 ' is compensated as equal lengths and new points Vuls, Vul 7 are
generated. The cubic B6zier curve C u 3 is generated from the derived points
and Su is subdivided.

The sub-patch generation procedure is as follows. Firstly, the boundary
curves Cul and Cu2 are converted to NURBS curves. The order of Cul
and C, 2 are adjusted to the same value. Secondly, a quadratic B6zier form
derivative function is generated from the vectors Vul 3, Vuls and the average
of these vectors. This function is converted to NURBS, the degree is elevated
to the same order, and knots are inserted as the same knot vectors of boundary
curve Cu l . Thirdly, Cull can be derived by adding this derivative function to
the boundary curve Cul. Similarly, Cu2

l can be computed from the vectors
Vul 4 ,Vul 7 and the average of these vectors. Finally, the NURBS surface
whose u-direction order is 4, is generated from four NURBS curves Cul,Cull,
Cu 21 and Cu2.

2.2.2 Continuity correction between sub-patches

Continuity of sub-patch Sul and Su2 must be contained in G' for construct-
ing GI continuity NBG patch. The quadratic derivative function is calculated
from the tangent vectors Vu1 l, V u1 6 of the boundary curve S u l and the av-
erage of the tangent vectors Cu l l and Cu 21 . The inner control points of the
sub-patch Su2 are modified using the G' connection method [4]. Through
this procedure, the continuity of the sub-patches Sul and Su 2 can be made
G1 . Finally a single NURBS surface Su is generated by concatenating these
sub-patches.

2.3 G1 connection with surrounding surface

The non-four-sided surface is generated at the intersection area of three or
more fillets. This non-four-sided surface must be joined to the surrounding
surface with G1 continuity. Sarraga [11] shows the G1 continuity and twist
compatibility condition around the vertex where N surfaces are joined. This
research is limited to the pair of boundary curves that must be joined with
G1 continuity. However, in our case, the pair of boundary curves is not joined
G'. Therefore, we propose the blending method of twist vectors to satisfy
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Fig. 2. G1 connection with surround surface.

the twist compatibility conditions. The procedure to make the G' connection
with surrounding surface is described below.

2.3.1 Cubic boundary curve

Fig. 2 shows the continuity correction method around a C O vertex. We explain

that boundary curves are cubic NURBS and their weights are 1.0 which is the
same as the cubic Bdzier curve. The surface interpolation method for non-

four-sided area Sa is described as follows: Firstly, the continuity between Sa
and Sb is corrected to C1 using quadratic Bidzier cross boundary derivatives.
The basic G' connection equation is expressed as

DSal(U, 0) _ k(u)195 b(ut, 1) +hUOa(r0 2

Dv Dv °) (t

Here, k(u) =k0(1 -u) + ku, h(u) = h0(1 -u) +hlU.
The twist equation is generated by differentiating equation (2) with re-

spect to u as follows:

D2sa(u,0) , k,(,) sb(u,1) ,+ , 2 b( , )
Ov~u - Du)-v + VDU (3

DSi( ,0 Nowconrolpoit0a

h() Ou + h(u) 0 D (3

The control point Pa12 can be regenerated using twist compatibility equa-

tion (3). Pal2 is calculated by applying the quadratic derivative function to

equation (3) as follows:

1_iVa3- nvb(kl - k°)Vb2  nbl(b--V)
Va2 [3a3 +flk(V2-V)

+ (h1 - h0)V 2 + 2hi(Vc2 - Vci)], (4)

Pal2 = Va2 + Pa03.

Here, nb is v-direction order of S m,

Va =Pl - PaoVb = - Pb2i,Vci = so(i+. ) Paoi. (5)



Surface Interpolation of Non-four-sided and Concave Area 393

Fig. 3 G' connection with Fig. 4 Shape control result of
surrounding surface. center area.

By the same procedure, continuity between Sa and 8d is corrected to G'
using quadratic Bdzier cross boundary derivatives. Pal4 is calculated by the
same method to satisfy the twist compatibility. Next, continuity between sub-
patches Sal and Sa2 are connected to G'. Generally, it is difficult to satisfy
twist compatibility conditions around the C O continuous vertex. Therefore, in
order to solve this problem, new control points are generated by knot insertion
and these control points are corrected to satisfy the twist compatibility. In this
method, boundary curves and cross boundary derivative curves are converted
NURBS. P'a02 is generated by knot insertion between Pa02 and Pa03 . Knot
vectors are computed by the following procedure:

Case 1: (the number of control points and the order are the same).
If a knot of 0.5 is inserted, all the control points of the section will be
regenerated by uniform distance. Then, we used 0.5 for the knot vector
for both cases; generating a new control points at the start and end of
the boundary curve.

Case 2: (piecewise boundary curve). By the same considerations, the
knot is set to knotv[order]/2.0 for generating new control points at the
start of the boundary curve. At the end of the boundary curve, the knot
value is set to 1.0 - (1.0 - knotv[cnum - 1])/2.0. Here, knotvo is knot
vectors. cnum is the number of control points.

These knot values should be adjusted by designer requirements. By the
same procedure, Pal 2,Pa 22,Pa 32, Pa 0 4,Pa 1 4,Pa 24 and Pa34 can be derived.
The control points P'a14 and P'a 24 are calculated by the equation (4) to satisfy
twist compatibility.

This method can be used to interpolate any number of non-four-sided
area (over 4 sided). The G1 continuity can be satisfied with the surrounding
surface, and the twist compatibility condition can also be satisfied.

The surface shape of the boundary area and the center area can be mod-
ified smoothly by using the NBG patch shape control method. Fig. 3 shows
a surface interpolation result for a pentagonal area. Continuity with neigh-
boring surface is corrected to G'. Contour curves of the surface are smooth.
The degree of S' is elevated to quartic and the center control point is moved

30 mm for surface normal direction at u = 0.5, v = 0.5. Fig. 4 shows the
interpolation result. The center area of the surface can be modified to obtain
G' continuity with the neighboring surfaces.



394 J. Sone, K. Konno, and H. Chiyokura

2.3.2 Case of piecewise and rational boundary curves

The Konno method [7] is used to join G1 between piecewise Sal and piecewise
Sb. If the boundary curve is of rational form, the Chiyokura method [3] is
used. If the boundary curve is of rational form and the weights of Pa03 and

a02 are different, we should use the LIU method[10] to make a G1 connection
between Sal and Sa2.

§3. Concave Areas

In this section, the surface interpolation result is described for concave areas.
Firstly, we apply it to a one-sided concave area. Next, we consider a two-sided
concave area.

3.1 Basic idea

It is important to select the four side edges to interpolate the concave area.
Our basic idea is that smooth surface have a smooth streamlines. We selected
3 parameters to evaluate the smoothness of streamlines as follows:

1) Max difference of isoparametric line length : MDI

2) Max difference of variation of isoparametric line length : MDVI

3) Max difference of isoparametric line width : MDIW

Here, 1) and 2) evaluate the variation of streamline length and, 3) evalu-
ates the variation of the width of streamline. We believe that the surface can
be smooth if these parameters take a small value. Designing four-side edges
proceeds as follows:

1) Check concave area,

2) Decide the axis to make a symmetrical shape,

3) Surface edges are selected by symmetry, and concave area curves are
composed as one edge,

4) Interpolate by NURBS boundary Gregory patch,

5) Evaluate the surface shape by the evaluation parameter,

6) Make the best edge selection.

3.2 Interpolation for a one-sided concave area

The surface interpolation method is applied to a one-sided concave area.
Figs. 5-7 show the results of interpolation for a simple case. The concave
area is generated by difference boolean operation to cubic, which is cut by the
free form surface. Fig. 8 shows the evaluation results of the surface. Pattern 1
takes small parameter values and isoparametric lines and shading images are
smooth as shown in these figures.

Figure 9 shows 3 types of surface interpolation results for deep concave
areas which are modeled by the difference boolean operation for a cubic which
is cut by free form surfaces. Figure 10 shows the evaluation results using
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Fig. 9. Surface interpolation of one side concave area: large case.

the previous parameters. Pattern 1 takes small parameter values, and the
isoparametric lines are smooth as shown in these figures.

Figure 11 a) shows surface isoparametric lines of complex concave area, b)
is the shaded image, and c) shows the control points of SU. The interpolated
surface is smooth as shown in this figure. From these results, smooth surfaces
can be generated by selecting the four-side edges to minimize the MDI, MDVI
and MDIW. We can get smooth surface for complex concave area.
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Fig. 12. Surface interpolation of two side concave area pattern 1.

Fig. 13. Surface interpolation of two side concave area pattern 2.

3.3 Two side of concave area

In the same manner, a simple two-sided concave area is modeled by the dif-
ference boolean operation for a cubic which is cut by a free form surface.
Figs. 12-14 show the surface interpolation results. Fig. 15 shows the evalua-
tion result for the generated surface. Although pattern 1 shows the lowest
strain of the surface from the shaded image, it still has a strain in the middle
area. In this case, MDI and MDIW are smaller for the low strain surface.
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Fig. 15. Surface evaluation result.

From these results, two-sided concave cases require further study.

§4. Conclusion

We propose a non-four-sided interpolation method using a single NBG patch
for a concave area. With this method, sub-patches are generated dividing
at C O continuous point, component surfaces S' and SV are constructed by
merging these sub-patches, which correct continuity.

We selected the 3 parameters to evaluate the smoothness of the surface
streamlines. Selecting the four edges to minimize these parameters can gener-
ate a smooth surface. A one-sided concave area can be interpolated smoothly
for complex cases. For two-sided concave case, evaluation parameter is effec-
tive, however, further research is necessary to improve the surface strain.
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