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A Basis for Homogeneous Polynomial Solutions

to Homogeneous Constant Coefficient PDE's:

An Algorithmic Approach through Apolarity

Michel Pocchiola and Gert Vegter

Abstract. Some recent methods of Computer Aided Geometric Design
are related to the apolar bilinear form, an inner product on the space of
homogeneous multivariate polynomials of a fixed degree, already known in
19th century invariant theory. A generalized version of this inner product
was introduced in [81 to derive in a straightforward way some of the recent
results in CAGD. Here we extend this work by applying it to compute
solution spaces of homogeneous constant coefficient PDE's.

§1. The Homogeneous Apolar Bilinear Form

1.1. Review

In [8] we introduced a generalization of the apolar bilinear form defined on
the space of homogeneous polynomials (of a certain degree, and with a fixed
number of variables). This bilinear form, used extensively in the symbolic
method of the classical theory of invariants, has been revitalized by Rota and
his co-workers, cf [2] and [4]. In CAGD, a similar binary form on the space of
univariate polynomials of a fixed degree has been studied by Goldman [3]. It
is related to the blossoming approach introduced by Ramshaw [7].

In this section we review some of the properties of the apolar bilinear
form. Then we extend [8] by studying constant coefficient partial differential
equations of the form p(O)f = 0, where p is a fixed multivariate homoge-
neous polynomial. In particular, we derive an algorithm computing a basis
for solution spaces consisting of homogeneous polynomials of a fixed degree.
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1.2 Vector spaces of forms

Let el,... ,e, be the standard basis vectors on Rs and let x = (xI,...,x")
be the standard coordinates on R'. The standard inner product on R' is
denoted by (., .), i.e., (u, v) = uivl +... + usvs, for u, v G R'.

A central object in this paper is the space of real homogeneous poly-
nomials of degree n on R', denoted by 7-i,(]R). A polynomial in 7-/(IR3 )
is the sum of monomials of the form cax"1 x", where co E IR and a
(al,... ,a,) E 2Z_0 is a multi-index of weight lal = a1 + + a,. For con-
venience the monomial x"' ... x"ý is denoted by x". Linear homogeneous
polynomials on R' are of the form f(x) = (u, x), for some u C R'. We denote
f by (u, .).

For multi-indices a = (a,,... ,as) and/3 = (/30,... ,/3s) in ZZ' 0 we define
a /3 if ai K /3i for i = 1,..., s. The relation I is a partial order on 2Z•0.
Note that a /3 iff there is a A E 2ZZ0 such that /3 = a + A. We shall write
a0-/3 if it is not the case that a 0/3. A monomial order is a linear ordering
-mon on 2Z>_o such that (i) if a<mon/3 and y C 2ZCo, then a + 7--mon/3 + -,
and (ii) •mon is a well-ordering on 2ZZ0, i.e., every non-empty subset of 2Z•0
has a smallest element with respect to <mon. We use the notation a<monO3
in case a0mon/3 and a /3. Furthermore, we use the property that a<mon/3
whenever a /3. Well known examples are the graded (reverse) lexicographic
orders, defined by a<mon/3 if la < 1/31, or lal = 1/31 and in a - /3 the left-
most (right-most) non-zero entry is negative (positive). Monomial orders play
a paramount role in algorithms for multivariate polynomials, especially with
regard to termination conditions; See e.g. [1].

The set of multi-indices in 2Z•0 of weight n, denoted by F,n, is a finite
set with #F,,n = (n+s-1) elements. For a E Fr,, the factorial function is
defined by a! = a,! ... a,!, and the multinomial coefficient (') is defined by

(n) n!
With a polynomial f(x) = c•. x', we associate the homogeneous
differential operator f(O) = - m c,, 0", where a' = 0" . . . Here
0 = ((a.. . , Os), with Oi = 6/Oxi. The directional derivative D,, : H (]W)
K,_ 1 (IR) with respect to u C R' is the differential operator (u,0), i.e.,
D = ul01 + ... + u., 9.. Note that 0i = (er, 0) = De,. Considering ei as a
multi-index of weight one, we also have 0i = ae•

1.3. Apolar pairing

This subsection is concerned with a straightforward generalization of the
rather well-known apolar inner product [f, g] = f(a)g, defined on the space
of homogeneous polynomials 7-4n(1R). The main result concerns a character-
ization of this inner product in terms of three simple properties that will be
the basis for the construction of special bases of "H-4(1') in later sections.
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Definition 1. For fixed integers m and n, with 0 < m < n, the apolar pairing

is the map
[., .].,,n : '. R ) x 8nR ) -* n, nR )

associating to the homogeneous polynomials f E 7Hn(IRS) and g E 4n(1R 8)

the homogeneous polynomial [ f, g ]m,n of degree n - m, defined by

[f, g.,n- =(n-m)! f'0)g.
n!

Note that we have in fact a family of pairings, one for each pair of integers

m and n with 0 < m < n. In this paper, the term pairing refers to the whole

family of bilinear maps. From now on we shall drop the subscripts m and n,

since they are implicitly known as the degree of the first and second argument

of the pairing operator.

Theorem 2. The apolar pairing is the unique bilinear pairing with the fol-

lowing properties:

1) (Apolar pairing with constants). For f c 1in(IR):

[1,f]=f,

where 1 C 1io(R 8) is the constant homogeneous polynomial of degree 0.

2) (Apolar pairing with linear forms). For f E Hin(IRS) and u E 1R':

1
[(u,.), f] = -Duf.

n

3) (Transposition of a homogeneous factor). For fi E 1-imj(1R), f2 E

H11m2(R'), and g E -n((R'), with mi + m2 < n:

[ flf, i] --- [ fl, [ f2, g]]

It is obvious that apolar pairing is a bilinear operator, satisfying these

properties. For the proof of uniqueness, we refer to [8]. Identifying the space

of zero degree polynomials with R, we see that for n = m, apolar pairing

corresponds to a real bilinear form on the space of homogeneous polynomials

of degree m. The next result states that this bilinear form is even an inner

product. Again, the proof is contained in [8].

Proposition 3. The apolar bilinear form [., • ] : H"m(]') x 7-,m(R 5 ) --* R is

an inner product on the space of homogeneous polynomials of degree m.
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1.3. Dual bases

First we recall the definition of a dual basis pair with respect to the apolar
inner product [., on 7"Hin(Rs).

Definition 4. The dual basis of a basis {f a E Fs,m} of 7"m(Rs) is a
collection {go a E rs,m} of polynomials in W-,m(]R') such that, for a, 13 C

[f, g1] =

It is easy to prove the standard fact from linear algebra that a dual basis
is indeed a basis. Given a dual basis pair, a polynomial f E 7im(Rs) can be
expressed with respect to either basis in terms of coefficients depending on
the other one:

f= [g , f If.= If [, f Ig•. (1)

aErý,m aEr,,-

Example. (Dual of homogeneous Bernstein-B6zier basis). Let {x', ... , x'} be
a basis of R', and denote by u1(x), .... , u,(x) the coordinates of any x E R'
in this basis. The polynomials

B,,(x) = (n) U1 (X)a1. ,()ý

where a E Fr,,, form the homogeneous Bernstein-B1zier basis of 7-(n(]')
with respect to the basis .x1,...,x8} of R'. Its dual basis consists of the
polynomials

10(y) = (x1,Y)' .. W,

i.e., [Be, lp] = , For the proof, see [8].

§2. Solving Homogeneous Constant Coefficient PDE's

We now show how dual bases can be used for the efficient computation of
a basis for the solution space of a homogeneous partial differential equation
with constant coefficients, i.e., the space

{f C 2•4(RS) I p(O)f = 0}. (2)

Here p E H-m(Rs) is a polynomial, p 54 0, that will be fixed throughout

the paper. Furthermore, m and n denote fixed integers such that 0 < m <
n. Our approach is both an alternative and an algorithmic counterpart of
Pedersen's work [5,6]. These papers deal with algebraic properties of the space
of solutions. We continue Pedersen's work by presenting an optimal algorithm
for the computation of a basis for the solution space. Our techniques are new,
since they are based on properties of dual bases, together with some recursive
properties of the apolar bilinear form introduced in [8].
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2.1. Characterizing a basis for the space of solutions

From now on we consider a family of functions {fa I a E 2Zs_0 } such that
(i) f." fo = f.+0, and (ii) for all n > 0, the set {f,, I a E rF,n} is a basis
of 7-i.('s). The dual basis of the latter set is denoted by {g. I a E rF,n}.
An example of such a pair of bases is formed by the Bernstein-B6zier basis,
together with the lineal polynomials introduced in the example at the end of
the preceding section.

Lemma 5. For a,/3 E 2Z'_o with lal < 131:

go,'if a 1

Proof: Let m = lal and n = 1/31, and let f = [fa, go] E 4n-im(,RS).

Consider the apolar inner product [f7 , f ], for -y E rs,n-m. Since f. • fy
fa+y, transposition of a factor (See Theorem 2, part 3) fa yields: [Jf', f ]
[fa+r, g,] = + First consider the case a+/3. Then a + y # /3, and
hence [f.e, f] = 0, for all 7 E Fs,n-m. Since the apolar pairing is an inner
product and {.& I y E Fs,n-m} is a basis Of J-nnm(' 8 ), it follows that f = 0
in this case. If a 13 the previous derivation shows that [fy, f] = ,-n , so
identity (1) implies f = --yEr ,.. I[f, fy]g Y = 0-" [E

In the following, our fixed polynomial p in (2) is given in the form

p 5Z ca fa, where c, = [p, ga].

The following result characterizing the kernel of a polynomial differential op-
erator is the key ingredient for the algorithm developed in the next section.

With p we associate the linear map Dp : ?in(Is) --+ 7-,nm(]') defined
by Dp(f) = [p, f], and the map Tp : -,n-m(1') - ?--,H(1R) is multiplication
by p, i.e., Tp (f) = p f. Given an integer k, and a subspace U C 2-ik(R•R),
we denote by U' the orthogonal complement of U with respect to the apolar
inner product [., .] on 7-k(IRs).

Proposition 6.
1) KerDp = (ImT,)'±.
2) The map Dp is onto.

Proof: Theorem 2, part 3, implies that Tp and Dp are adjoint operators,
i.e., [Tp (f), g] = [f, Dp (g)1, for f E "n-,m(n(R) and g E 7-n(R'). The first
claim follows from this identity. Now since T7 is injective, the result of the
first part implies that dim KerDp = dim 7-, (R) - dim 7in-m (R•). Therefore,
dim ImDp = dim Rn-,m(]'), and hence Dp is onto. El

As a special case, consider the polynomial p = fao for some a 0 E F,,m.
According to Lemma 5, KerDp contains g,3 whenever 13 E rs,n such that
ao0+3. Since a 0 13 iff 3 is of the form13 = a 0 + A for some A E Fs,n-m, it
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follows that #{i3 C F8 ,, I ao-•+0} = #Fs,n - #Fs,n-m = dim KerDp. The last
equality follows from Proposition 6, part 1. Therefore, a basis for the solution
space KerDp is the collection {go 1] E Fs,n and ao+1f}. The following result
generalizes this special case.

Theorem 7. (Basis for solution space of PDE). Let <mo be a monomial order
on 7ZAo and ao E Fs,m be defined by ao = min<mon{a E rs,m I [p, g] o 0}.
Furthermore, for any A C Fs,n-m, let PA E7in-m(1R8 ) be the polynomial
defined by pA = [p, g 0o+A ]. Then

1) The set Pn-m {PA I A C Fs,n-m} is a basis of -Ln~ m(]RS).

2) Let Qn-m = {qA I A E Fs ... } be the dual of the basis Pn-m,, of
W.-,.m(]R), i.e., [PA , q, ] = t5 ,,. A basis for the solution space KerDp=
{f C 7-n(1,") I p(O)f = 0} is the set

{ I 13 C rF,, with ao-+1-, (3)

where - C 7-n(1Rs) is defined by

Remark. The first claim of Theorem 7 is not necessarily true for other choices
of ao. Consider e.g. the polynomial p(x) = 2x2 + 2x 1X2 + x2, and let a0
(1, 1) E r 2,2 . Here we take the monomial basis for the space of polynomials of
degree n on R 2 , i.e., we take fo(x) = xO, for x C R 2 and 131 = 01 + 2 = n.
The dual basis consists of the functions go, where go(x) = (n)xo. For A c F 2,2

we have go+A(x) = (o+A)1•+1x•2+1. Take q(x) = 2x1 - 2x 1x 2 + x2, then

p(x). q(x) 1 4x4 + x2, and hence, for all A E F 2,2:

[PA, q] = [[p, ga+A1], q] = [p'q,g o+] +A= 0,

yet q : 0. Hence the functions PA, where A ranges over F 2,2 , do not constitute
a basis for 72 2(R2).

To prove Theorem 7 we need the following two lemmas.

Lemma 8. For A, IL E Fs,n-m we have

[PA, Coo+A_,2 ifyi[ao+A,

[' = , otherwise.

Proof: The proof consists of a straightforward calculation:

[PA, f = f., [p, g :+,] = [p, [f,, g. 0 ± I]
= [P, gaý+-A-, , if P I ao +A,

10, otherwise.

The last identity is justified by applying Lemma 5. El
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Lemma 9. Let Ao E Fs,n-m. For f E kin-m(I•R), the following statements
are equivalent:

1) [gA, f] O, for al A<monAo,

2) [pA, f]= 0, for all A)_.mon0Ao.

Proof: It follows from (1) that

[pA, f] = Z [p•,f/][g/, f]. (4)

Consider /. E Fs,n-m such that A<mon/I, then a0 + A - lI<mona,0. Therefore,
the definition of a 0 implies cO+A-,, = 0. In view of Lemma 8, we know that
[pA, fl ] is equal either to co+\-, or to 0, so in any case we have [pA, f/I] = 0.
This observation allows us to write (4) as

[Ak, f] =C•0[gA, f]I + E [PA,fM][91.,,f]. (5)

This identity shows that the first statement implies the second one. So assume
that statement 2 holds. We may assume that f 5 0, otherwise there is nothing
to prove. Let A1 be the least multi-index with respect to the monomial order

-•mon such that [g\, , f] $ 0. Then (5) implies [pA, , f] = co[g\ , f] is
nonzero. Hence Ao<monA,. Consequently [gA, f] = 0 for all A<_monA0, which
is statement 1. El

Proof of Theorem 7: Let U C -n-,m(1Rs) be the space spanned by the
pA, A E Fs,n-m. Since #rs,n-m = dimh-n-m(RS), it is sufficient to prove
that U = 7-4-m(IRs), or, equivalently, that U- = {0}. Thus, if f E U',
then [f, p,] = 0, for all A E rsn.-m. According to Lemma 9 this implies
[f, pA] = 0, for all A E Fr,,-m, so f = 0. This proves 1). Now in view
of Proposition 6, the space KerDl is of dimension #rs,n - #PS,n-m, i.e., of
dimension #{fO E FIn I ao+--f}. On the other hand, it is straightforward to
see that the polynomials gp, 3 E Fr,,, with a 0 0-p3, are linearly independent.
Therefore, in order to prove that they form a basis of KerDP we just have to
prove that they belong to KerDp. Taking Proposition 6, part 1, into account,
we actually have to check that [p.q/I, y] = 0, for all f c r,,,, with ao0/3.
Since

p ' *q . = [ p -q A , g y f -,
"-YErs,n

E [[P,go+]0 ],qf]fo,+r+a [P'q F wgt]fh 3
,\Er.,n-- •r~

ýjEra,n

it follows that [p.q,,, gp•] = 0, for all f3 E rs, with a0+01. 1:1
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2.2. Computing a basis for the space of solutions

We now present a simple, efficient algorithm for computing the dual basis
Qn-rn, as well as an example showing how the algorithm works. Recall that
for a = (a1,.. . ,as) s,m, the number cQ is equal to [p, g0 ]. We extend
this definition to a E 2Z by putting c, = 0 in case at least one of the entries
a 1 ,. . . , a, is negative.

Corollary 10.
1) The dual basis Qn-m = {q, I iP E Fs...} of Pn-m is defined recursively

by 1

q=, (fA - c3°+_-tq,)"
cao

P <mon1V

2) For/3 0 F,,n, with ao-+0, the basis function go E -,n (WR), is of the form

gol = gol - E at, o ga0+,,.

IIJEr,n-m

where the coefficients a,,,3 are defined recursively, for IL E Fs,n-m, by

a143= 1(c- - >3 c0 0+v~avoj).

/r<monv

Proof: Recall that we are looking for a set of functions Qn-m = 1%, E

rs,n-m}, such that [pv, q%,] = 6,,p . In particular, according to Lemma 9 the
functions q. satisfy [g,, qp,] = 0, for v<moo.... Therefore, q,. E Span{f, I v E
rs,n-m and /W<monv}, or, equivalently:

qj, E Span({q, I V E Fs,n-m and /1<monv/} U {h}). (6)

Assume we have determined q, for v E Fs,n-m with I<monv. To compute
q,, satisfying (6), we have to determine constants d.,, for pi, V G Fs,n-m with
/rmonnv, such that

qA = dpfp + d. dq\.

Since Pn-m and Qn-m are dual bases, the constants d,. are uniquely deter-
mined by the condition [pv, q 1] = b,,J. Combining the last two identities we
see that

[p, qj ] dyj[Pv I fp I + E dl'•5b•,v"

From this identity, which holds for all v E Ps,n-m with /1:_monv, we derive

1

d'I = C1o-+, for mo

c"0
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which proves the first part. Now put a, - [p qM, gp ] in (3). Then, according
to part 1,

A<monv

Since [p. f, go [p, [fp, g] [p, gg-_•], the proof is complete. El

The algorithm for computing a basis for the solution space of the partial
differential equation p(O)f = 0 is now simple:

Algorithm (for computing a basis for KerDp).

forall A E rs,n-m in decreasing <mon-order do
forall 13 E r 8,, with ao+•3 do

Example. Consider on R 3 the homogeneous constant coefficient PDE

02f 0 2f 02 f
0x 10x 2  OX2 + OX0X3

corresponding to the homogeneous polynomial p(x) = 1x 2 - X2 + X2X3. In
particular, the setting of this example corresponds to s = 3 and m = 2.
We determine a basis for the solution space in 7-H3(]3), i.e., we take n = 3.
To this end, consider the graded reverse lexicographical order on 7Z3_0. Let

fp(x) = xO, and let go(x) = (n)x', where n = 1,31. In this example we denote

functions indexed by a = (i,j, k) E 7Z_, like f>, by fijk.
The sets {ff 1)3 E r.,,} and {jg 13• E T8,n} are dual bases, and moreover

fa • f3 = fa+p, so the conditions for applying Theorem 7 and the algorithm
from this section are satisfied. In the notation of Theorem 7, we have a 0 =

(1,1,0). Note that p = fo10 - f02O +f01l, so c110 = 1, c020 = -1 and
c0ll = 1, whereas all other coefficients cijk, with i + j + k = 2, are zero. Now
the coefficients az are computed according to the algorithm above, in other
words we successively determine the rows in the following table (computing
for each row the entries in arbitrary order):

ag, 13 = 300 201 102 030 021 012 003

p = 001 0 0 0 0 -1 1 0
010 0 0 0 -1 1 0 0
100 0 0 0 -1 2 -1 0

This table corresponds to the following seven basis functions of KerDP: g300,

9201, 9102, g030 + 9120 + 9210, 9021 + gll - 9120 - 29210, 9012 - g111 + 9210, and

9003.
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These functions can be turned into monomial form by straightforward substi-
tion, yielding the following explicit basis for the solution subspace of H33 (R3):
X1, 3x1x 3 , 3xx3, 3x x 2 + 3xX2 2x3, -6x x 2 - 3x, 2 + 6xlX2X 3 + 3x2X3 ,
3x1x 2  6xlX2X3 + 3x 2x, x33•

Acknowledgments. We are greatful to the anonymous referee for corrections
and suggestions for improvement.
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