
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP012041
TITLE: The [2-5-2] Spline Function

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: International Conference on Curves and Surfaces [4th], Saint-Malo,
France, 1-7 July 1999. Proceedings, Volume 1. Curve and Surface Design

To order the complete compilation report, use: ADA399461

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADPO12010 thru ADP012054

UNCLASSIFIED

The (2-5-2) Spline Function

Jae H. Park and Leonard A. Ferrari

Abstract. Splines have been used extensively in the interpolation of mul-
tidimensional data sets. Linear interpolation utilizes second order splines
(first degree piecewise polynomials) and has widespread popularity be-
cause of its ease of implementation. Cubic splines are often used when
higher degrees of smoothness are required of the interpolation process.
Linear interpolation has the advantages of not requiring the solution of
an inverse problem (the data points are themselves the coefficients of the
triangular basis functions) and extremely efficient generation of the output
sample points. Unfortunately, the linear-interpolating function has only
Co continuity (the function is continuous but its derivatives are discontin-
uous) and therefore lacks the required smoothness for many applications.
We provide a new algorithm in this paper based on the efficient derivative
summation approach to spline rendering. Cubic B-spline interpolation for
uniformly spaced data points provides C2 continuity. The interpolation
function can be rendered quite efficiently from the basis coefficients and
the basis function, using a cascade of four running average filters. Unser
et al. have shown a digital filter solution for the inverse problem of ob-
taining the spline coefficients from the data points. A matrix inversion
solution is also commonly used. Both solutions require the use of floating
point multiplication and addition, while the forward problem can be im-
plemented utilizing only fixed-point additions. In this paper, we develop
a class of spline basis functions which solve the interpolation problem us-
ing only simple arithmetic shifts and fixed point additions for solutions to
both the forward and inverse problems. The system impulse response for
the new interpolators appears to be closer to the ideal interpolator than
the B-spline interpolator. We refer to the new splines as (2-5-2) splines

§1. Introduction

Splines are well-accepted in Computer Graphics[1,2,3,4]. The high compu-

tational requirements of cubic splines and the large amounts of data make

them difficult to use in multi-dimensional applications. In many applications,

bilinear interpolation is used instead of cubic splines because of its simplicity

in implementation. However, bilinear interpolation cannot produce images

of sufficient quality for many application because of its C O continuity. The

Curve and Surface Design: Saint-Malo 1999 307
Pierre-Jean Laurent, Paul Sablonniire, and Larry L. Schunaker (eds.), pp. 307-314.
Copyright 02000 by Vanderbilt University Press, Nashville, TN.
ISBN 0-8265-1356-5.
All rights of reproduction in any form reserved.

308 J. H. Park and L. A. Ferrari

(2-5-2) spline approach can be computed at nearly the same efficiency as the
bilinear interpolator, but provides much higher quality results.

In general, spline computation can be divided into two parts. The first
part requires the solution of an inverse problem to obtain the coefficients
(vertices) of the basis functions, and the second part is a forward computation
to generate the interpolating spline from its coefficients.

§2. Inverse Problem

Assume we are given (m - r + 3) data values Pi, i = r -1,..., m + 1. Further
assume that we wish to find a continuous spline curve such that on a specified
set of equally spaced points, iii i = r - 1, ... , m + 1, the curve attains the
values Pi. Let Bi,,(ii) denote an rth order set of basis splines defined on the
knot set i = 0, ... , m. Then, for the case of a curve in one-dimension we can
write

m
Q(up) =E VBi,r(UP) = Pp, p = k - 1,. . ., m + 1 1

i=0

This represents m - r + 3 equations in m + 1 unknowns. In the case of a
cubic spline, r = 4 and we are short two equations. We are free to augment
the data set Pi at both ends with additional data values. However, these
augmented data values effect the shape of the interpolating function Q(ii)
non-locally.

In matrix form, we obtain

B 0,r(-i2r-) ... Bm,r(r 2) V Pr-

(2)

Bo,r(ftm+2) ... Bm,r(fim+2)J /Vm Pm+2J
or

BV = P,

where V denotes the vector of unknown coefficients, B represents the matrix of
basis spline values at the knot locations and P represents the given set of data
points including the augmented values. The solution to (2) exists whenever
the matrix B has an inverse. The solution to (2) is efficient whenever B-1P
or its equivalent is easy to compute.

For the cubic B-spline defined on uniform knots, it is easy to show that
the interpolation problem utilizing simple, uniform knot B-splines leads to the
inversion problem

4 1 0 0- VO P2
1410 0

1 0 1 4 1 0 (3)

0. 0 1 4 1/
O.0 . 0 1 41 Vj P+2J

The (2-5-2) Spline Function 309

In this case the matrix B can be inverted using forward elimination and
backwards substitution as in [1]. While the B-spline matrix is banded and can
therefore be inverted reasonably efficiently, the process requires full floating
point multiplication and addition. Even after the matrix inversion, to obtain
the vertices, full floating point multiplication and addition must be used.

The first attempt at reducing the number of the calculations was made
by Unser, et al with a digital filtering solution to the problem by noting that
the inverse of the FIR filter given by B(z) = z + 4 + z - 1 is the filter with
impulse response [3]

-6a Inl
b- (n) .2 a (4)

where, a = Vr - 2 is the smallest root in absolute value of the polynomial
z 2 +4z+1.

As they implemented it, the above IIR filter should be split into causal
and non-causal parts, and applied twice to obtain the vertices: the non-causal
sequences and anti-causal sequences. Since b- 1 (n) becomes smaller as nl gets
larger, we can assume the filter has only several non-zero elements from the
center of the filter sequences. Thus, we can approximate the filter with an
FIR filter as below, and call it the Inversion FIR filter:

b-'(n) =
(2 a ln

, if ml m, (5)
. 0, otherwise.

Even with the Inversion FIR filter, we still need full floating point multi-
plication and addition to get the vertices. The (1-4-1) spline does not provide
a simple solution to the coefficient inverse problem because its characteristic
polynomial, z2 + 4z + 1, has irrational roots. The polynomials 2z 2 + 5z + 2 has
roots which are negative powers of two. We refer to these splines as (2-5-2)
splines which have roots which are of similar magnitude to the roots of the
(1-4-1) spline.

We assume the spline is defined on the uniform set {-2, -1,0,1, 2}, and
that it takes on the set of values {0, , , 1, 0} at the knots. In Sect. 6, we set
up sixteen equations to solve for the 16 polynomial coefficients defining the
(2-5-2) spline. We note that it has C 2 continuity at knots 1, 2 and 3 and C'
continuity at the knots at 0 and 4 (from the polynomials). Hence, the (2-5-2)
spline is a multiple knot spline defined on seven knots with the knots at 0
and 4 having multiplicity two. We also note that the normalization property
holds, that is -:=0 Pj(u) = 1, for u E [0, 1].

If, as in [3], we assume periodic boundary conditions, equation (2) takes
the following circulant form:

310 J. H. Park and L. A. Ferrari

2A

z. P - - F- I *1P

a Z & . Z-1 Z* Z*

A : # of bits in the fixed point number

Vn: Vertices

P.: Sampled data

Fig. 1. The inverse filter for a (2-5-2) spline: a = -1/2.

-52 0 .. 0 2- V0 P2
2 5 2 0 . 0

1 0 2 5 2 0 . (6)

L2 0 . . 0 2 5J LVm. L +2 -

or

B 5 V= P. (7)

With the approach Unser, et al applied to (1-4-1) splines, and the FIR
filter approximation, we can obtain a Inversion FIR filter for (2-5-2) splines
and the FIR filter will be

b-1(n)= 3(-1)I n ' , if In n,
I0, otherwise. (8)

The filter can be implemented as shown in Fig. 1 with delays, mulipliers
and adders. Although the filter shown in Fig. 1 can be used for a (1-4-1)
spline with change of ce = V3- - 2, the FIR filter for a (2-5-2) spline can be
implemented with an integer processer because all its coefficients are powers
of 1/2, and the power of two multiplication can be realized with shifts.

§3. Forward Problem

Ferrari, et al., provided an efficient algorithm (the Fast Spline Transform,
(FST)) for computing a spline by Derivative/Summation [5]. Once we obtain

The (2-5-2) Spline Function 311

h

Sr4h h3 : the 3rd order impulse scaling (1,1)

h,: the 4th order impulse scaling (1,4, 1)

S.: the interpolated sequence

r r hr
1

Sn V : the vertices sequence

-_.4 1 . % J V':thevertices with zero padding
Z ' Z" Z" Z1

I st sum 2nd sum 3rd sum 4th sum

Fig. 2. The FST filter for (2-5-2) spline calculation.

the vertices, the spline is calculated by the FST with appropriate Impulse
Scaling. The FST is as follows, where r is the order of the basis function and
m is the interpolation ratio:

Algorithm FST

1) Find the Dirac functions corresponding to all orders of the rth order
spline's derivatives (r, r - 1,.., 1) [4].

2) Create an array of zeros with m - 1 elements between the knot locations;
initialize k = r.

3) Scale the appropriate Dirac functions by amplitude V, and sum the
resulting sequence into the array at the knot locations corresponding to
the Dirac functions(requires shift and add for the (2-5-2) spline).

4) "Integrate" the resulting sequence once using repeated summation. Set
k = k-1.

5) Return to step 3. Until k = 0.

6) The array contains the values of the spline at the specified locations.

The FST algorithm can be implemented as a digital filter for any spline.
However, to implement this with only fixed point shifts and additions, every
Impulse Scaling element(coefficient) of the spline must be powers of two. The
suggested filter (the FST filter) for the (2-5-2) spline is shown in Fig. 2. Be-
cause the (2-5-2) spline has double knots, both 4th and 3rd order impulse sets
exist. h4 and h 3 in Fig. 2 correspond to 4th order impulse scaling and 3rd
order impulse scaling. Fig. 2 shows clearly that the forward computation of
the spline is computed at the input data rate.

§4. Cosine Examples

Since the Impulse Scaling approach for the forward problem always generates
any (2-5-2) spline curves on the defined grids, the Impulse Scaling will not
effect the accuracy of the generated curves by each Inverse Problem scheme

312 J. H. Park and L. A. Ferrari

o . 1.0.Coo 0.C.o 4o 24-2 0 d o C4 2l3o 300 500I7411

0s 0s

2- 3. 4. .5 0 15?054.5001 .- .. 000 14.41 1

Fig. 3. The cosine interpolated examples: Top Left: True Cosine Curve, Top
Right: by Matrix Inversion, Bottom Left: by Unser's Inversion and by
FIR inversion.

(i.e., Matrix Inversion, Unser's IR Filter Inversion and FIR Filter Inversion).
The inversion schemes affect it. Unser's IIR filter Inversion and FIR filter
Inversion can be considered as an approximation operation of matrix inversion.
As shown in Fig. 3, the cosine curve generated by matrix inversion is closest to
the actual cosine curves because (2) guarantees that the (2-5-2) spline curve
passes through every data point (Pa's). Although the two filter approaches
are not guaranteed to pass through every data point, they all produce fairly
accurate curves in the middle section. For the (2-5-2) spline, they can be
implemented with an integer process because the Filter coefficients of IIR
filter and FIR filter's are powers of two. It appears that FIR filter inversion
generates more accurate cosine than Unser's IIR filter Invesion in Fig. 3, while
the FIR filter is nothing but the approximation of the IIR filter. The initial
value estimation for the anti-causal realization of the IIR filter results in less
accuracy. It can be confirmed that significant distortion appears at the right
end portion of the IIR filter inversion cosine interpolated curve in Fig. 3.

§5. Discussion

With either FIR Filter Inversion or IIR Filter Inversion, the (2-5-2) spline
interpolation will generates more accurate curves or surfaces than the (1-4-1)

The (2-5-2) Spline Function 313

0.8

0.6

0.4

0.2

0 ---

-0.2-

10 20 30 40 50 60 70 80 90

Fig. 4. The impulse responses of a (1-4-1) spline(the dotted line), a (2-5-2)
spline(the dashed line) and an ideal interpolator(the solid line).

spline interpolation does. This can be easily confirmed by the fact that the
(2-5-2) spline's impulse response is much closer to the sinc function than that
of the (1-4-1) spline (refer to Fig. 4). Because the sinc function is the base of
the perfect interpolation by the sampling therom, the (2-5-2) spline produces
more accurate interpolated results than the B-spline. In addition, the (2-5-2)
can be implemented with only fixed point shifts and additions. Therefore, the
(2-5-2) spline is at least as accurate as the B-spline, and can be computed
much more efficiently.

§6. Polynomial Coefficients for the (2-5-2) Spline

The spline is defined on five uniformly spaced knots {uo, i1l, 92, u3, u4}. For
each interval, we define u E [0, 1] as the polynomial variable. Then for each
interval, the coefficients {ai, bi, ci, di} represent the polynomial ai+biu+ciu2 +
diu3 . We denote the four polynomials by PO (u), Pl (u), P2 (u), and P3 (u).

We impose the following sixteen constraints:

i. Po(0) = 0

ii. P3(1) = a3 + b3 + c 3 + d4 = 0

iii. P (0) = bo = 0

iv. P3(0) = b3 + 2c 3 + 3d3 = 0

v. Po(1) = ao + bo + co + do =

vi. P(0) = al = 2

vii. P2(1) = a2 + b2 + C2 + d2 =

2viii. P3(0) = a3 =9

314 J. H. Park and L. A. Ferrari

ix. P(1) = al + bi + el + d =5

x. P2(0) = a 2 = 9

xi. PO(1) = b0 + 2c0 + 3d 0 = Pj'(0) = bi

xii. P (1) = b1 + 2c, + 3d1 = P2(0) = b2

xiii. P2(1) = b2 + 2c 2 + 3d2 = P3(0) = b3
xiv. Po'(1) = 2c 0 + 6d0 = P'(0) = 2c 1

xv. P'"(1) = 2c1 + 6d, = P2'(0) = 2c2

xvi. P2'(1) = 2c2 + 6d 2 = P3'(0) = 2c 3

References

1. Bartels, R., J. Beatty, and B. Barsky, An Introduction to Splines for
Use in Computer Graphics and Geometric Modeling., Morgan Kaufman
publishers, 1987, Los Altos, California.

2. de Boor, C., A Practical Guide to Splines, Applied Mathematical Sci-
ences, Vol. 27, Springer-Verlag, New York, 1978.

3. M. Unser, A. Aldroubi, and M. Eden, Fast B-Spline transforms for con-
tinuous image representation and interpolation, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 13, No.3, March (1991), 277-
285.

4. Sankar, P., M. Silbermann, and L. Ferrari, Curve and surface genera-
tion and refinement based on a high speed derivative algorithm, CVGIP:
Graphical Models and Image Processing, 56, No. 1, (1994), 94-101.

5. Ferrari, L. A., J. H. Park, A. Healey and S. Leeman, Interpolation using
fast spline transform (FST), IEEE Transactions on Circuits and Systems
I: Fundamental Theory and Applications, 46, (1999), 891-906

Jae H. Park and Leonard A. Ferrari
The Bradley Department of Electrical Computer Engineering
340 Whittemore Hall
Virginia Tech
Blacksburg, VA 24061-0111
ferrari~vt .edu

