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Approximated Planes in Parallel Coordinates

Tanya Matskewich, Alfred Inselberg and Michel Bercovier

Abstract. For the visualization of multivariate problems, a multidimen-
sional system of Parallel coordinates is used which provides a one-to-one
mapping between subsets of N-space and subsets of 2-space. A rigorous
methodology for doing and seeing N-dimensional geometry emerges as well
as several applications. Here an application to Error Tolerancing involv-
ing the visualization and characterization of "approximate coplanarity" is
presented. The exact description of the neighborhood of an N-dimensional
hyperplane in a parallel coordinate system is given.

§1. Introduction

The parallel coordinate system serves as a tool for visualization of multi-
dimensional objects and multivariate relations. It was shown ([1,2]) that this
representation gives a simple and constructive geometrical description for sub-
sets of points which are strictly coplanar (i.e. belong to a common p-flat in
N-dimensional case). This allows the visualization of coplanar points and
the existence of linear dependencies between variables. It leads to numerous
applications in different fields, and also practical applications involving finite
error tolerancing. Here exact descriptions of approximated hyperplanes in
the parallel coordinate system are given, providing a methodology for their
visualization.

In the next section a brief review of previous results is given. It is followed
in Section [3] by an exact mathematical formulation of the problem in the
general case. Sections [4] and [5] contain some auxiliary lemmas which make
the main result more intuitive, as well as the main result itself.

Although we have a complete and precise proof of the main result in the
general case of "approximated" p-flats in N-dimensional space, lack of space
prevents us from presenting it here.
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Fig. 1. Three collinear points in 2D (left) and 3D (right).

§2. Representation of Affine Subspaces in Parallel Coordinates

The parallel coordinate system is constructed in the following way: in the
Euclidean plane IR2 (or more precisely in the 2D projective plane P 2 ) with
xy-Cartesian coordinates, N copies of the axis y labeled X1,... , XN are placed
equidistant (usually the distance between adjacent axes is taken as 1) and
perpendicular to the x-axis. They are the axis of the Parallel Coordinate
system.

A point with Euclidean coordinates (Pl,..., PN) is represented by a polyg-
onal line with N vertices ýfi = (i- 1,pi), one on each axis. In this way, a 1 - -1
correspondence between points in RN and planar polygonal lines with vertices
on the parallel axes is established.

In 2D, a point is represented by a line (usually just the segment between
the axes is shown). It can be easily proved that the lines representing points
of a line C1 X1 + c2x2 = cO (for c1 + c2 $ 0) intersect at the point j1 2 with

xy-coordinates (C-+C C___ 2), or more generally at the point

(dic + d 2 c 2  c 07'12 C1 e + C2 ' cl + C2)1

where d, and d2 are distances between axis y and X 1 , X 2 , respectively. (Lines
with slope 1 are mapped onto the ideal points of projective plane, but in what
follows we will not consider any "degenerate" cases). Hence a fundamental
point +-+ line duality is induced (see Fig. 1).

In 3D, a line can be fully described by any pair from its three projec-
tions on coordinate planes. Each such projection is a line in 2D-space of the
corresponding coordinates, and so can be represented in parallel coordinates

exactly as was described above. Hence, if cfij xi + cl3 jl xj - clj} - projection
of the line on XiXj Euclidean plane (i, j E {1, 2, 3}), then it is represented in
the parallel coordinate system by the point iij whose coordinates may be com-
puted from equation (1), and can be found geometrically as the intersection
of corresponding lines. The three points T12, ir23 and #T13 are always collinear
as a consequence of Desargue's Theorem, and any two of them represent the
line in parallel coordinates. We denote by L the line on which the three points
lie (see Fig. 1).
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Fig. 2. Randomly sampled set of coplanar points in 3D and intersection of lines
L showing coplanarity.

Let us now consider a plane cIx 1 + c2x 2 + c3x3 = co. Every pair of points
belonging to this plane define a line L in parallel coordinates (which can be
constructed geometrically from the representation of points themselves). It
can be shown by direct computation that all such lines intersect at the common
point with coordinates

"C1 + C2 + C3 C1 + C2 + c 3

This condition can be used to characterize coplanarity. Note, that one point
is not sufficient in order to specify the plane. The solution is to introduce
an additional axis X. placed after X 3 and at a unit distance from it, and
consider the representation of points also in axes (X 2 , X 3, X'). This leads to

the additional point jf2 3 1' - (i+c2+c3l -, co+ (
CI+C 2 +C 3 ' Cl+C 2 +C3) (eFi.2).

This generalizes nicely to the N-dimensional case, and it can be shown
that a representation of a hyperplane in parallel coordinates also can be re-
cursively constructed by a simple geometric procedure, using affine subspaces
of lower dimensions. A hyperplane is represented by N - 1 indexed points;
the "first" one has coordinates

(c2+2c3+...+(N--1)CN cO
C• 2 +... + CN C l+ C2 +•-. CN (3)

and the others have very similar formulas.
A p-flat in N-dimensional case can be described by N - p linearly inde-

pendent equations, where each of them has the form ck-1 Xjk = co, and
so corresponds to a hyperplane in axes (Xl, XI2,.... Xi,+,). It follows that
a p-flat is represented by p(N - p) indexed points. The ensuing discussion is
restricted to "approximated" hyperplanes. It is easy to show that the general
case of an "approximate" p-flat in N-dimensional space can be reduced to the
study of some "approximate" hyperplane.
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Fig. 3. Sampled proximate line ax + by 1, a E [a-,a+], b E [b-,b+] in
orthogonal and parallel coordinates.

§3. Exact Problem Definition

We will use the following definition of "similarity":

Definition 1. Proximate flats are defined here as fiats with proximate equa-
tions. An approximate hyperplane is defined as a set of hyperplanes given by
equations

C1 X1 + C2 X2 + ... + CNXN = CO, (4)

where every coefficient can vary: ci E [c7, c+], i = 0,..., N.

Such a slab of hyperplanes is extremely difficult to visualize in orthogonal
coordinates, even for 3D. Another problem is that even in the 2D case, line
neighborhoods are unbounded in orthogonal coordinates, so neighborhoods for
different lines always overlap. Fig. 3 shows that samples of proximate lines (in
2D) form a cloud in the form of a very simple and nice convex quadrilateral.

In the N-dimensional case, a hyperplane is described by N - 1 points
which means that in the approximated case, we will get N - 1 "clouds" of
indexed points in parallel coordinates. In order to make things simpler, we
will use the following

Assumption 2. Free coefficients of equations are not allowed to vary, and
are supposed to be identically equal to 1.

(We have a complete analogue of the main result for the case when this as-
sumption is not applied.)

Lemma 3. It is sufficient to study only the range of the first indexed point
of a hyperplane. That is, the following mathematical problem should be con-
sidered: find the range of the function f : RN _ ]R2 such that

c . (ZY=(J--)ci 1 ) (5)

when cj E [c,c] (c- < c-, j = 1,...,N).



Approximated Planes in Parallel Coordinates. 261

A kCdM A

Cl mn ,e>

\7 
Coef~hax, 

<0

CoeffMaxk > 0 oerfax >0

Lk-k- k-i <ew <0

CoefMin <0

Fig. 4. Possible place for domain Q depending on the signs of CoeffMin k and
CoeffMax k.

The notations used are:

• x(cl, ... , Cg) and y(cl,..., cN) - the first and the second coordinates of
fN(cl,... , CN) in R2 respectively;

* B -- [c-, c+] x ... x [c-, c+j - box in the space of coefficients;

e Q = f(B) - image of B in the parallel coordinate system.

We now show why Lemma 3 holds in the 3D case. Here studying the range
of fr123 (equation (2)) is sufficient because fr231, can be rewritten in the form

c 3 + 2c, 1
7r231' = (1, 0) + ±,C1+C2+C3 C1+C2+C3

This implies that the equation of fr231, can be obtained from the one of 7t1 2 3

by shift and cyclical change of parameters cl -+ c2 , C2 --+ C3, c3 -+ C1.
For the general case, this "reduction" lemma can be proved using simple

combinatorics, and it can be shown that in order to describe the range of one
of the indexed points corresponding to a p-flat in N-dimensional space, it is
always sufficient to consider f2N with some coefficients identically equal to
zero.

§4. Some Notes on the Domain Q2

To get an intuitive feel about the structure of the domain 0, we consider the
possible location of Q2 and what it looks like. Note that for every k - 1, . . . , N
the following representation takes place:

N •

X(C1,..,CN) = k-i1 + Ej=1 (i - k)c - 1 + Coeffk y(Cl,... , CN), (6)ENj=1 ei
(j k)cj +E

where Coeffk = (j - k)1c3 + -=k+l (j - k) cj does not depend on ck.

<0 >0
If only ck varies, while the other coefficients are fixed, then (x, y) lie on the

straight line which passes through the point (k - 1, 0) and has slope 1/Coeffk.
Here CoeffMink ! Coeffk(Cl,.. .,Ckl,k+1,... ,CN) !5 CoeffMaXk



262 T. Matskewich, A. Inselberg and M. Bercovier

IX,=(-,-,+) . ';=-++

C3

l -0=(-, - )

Fig. 5. Important vertices and edges in the space of parameters.

for every choice of (ci,.... ck-1, ck+1,.. ., cN), where

CoeffMink = Coeffk(C+,... •Cl•ck+l,. ••)1 -) k+ .N,c+ (7)
CoeflMaxk = Coeffk(c . ... , %-1, (7+),"

The domain Q lies between lines with maximal and minimal slopes. More
precisely

Lemma 4. Q2 lies above the line corresponding to CoeflMaxk iff

CoeflMaxk > 0 (otherwise it lies below the line). Q) lies above the line corre-
sponding to CoeffMin k iff CoeffMin k < 0 (see Fig. 4).

Let us now introduce the following notations for some important vertices
and edges of box B. There are 2N (among 2 N) important vertices:

Ak = (c+ .12 , k-lkCk+l N)(8)-k = C ,C ... _ 1 +' + +. )( )
# k : ( 1 C 2 k -'' , Ck_ !7C. ...! ,

for k 1, ... , N and 2N important edges connecting these vertices (see Fig. 5):

ak(Ck) = (C,..., -1, Ck, C +[,...+ (9)

= ... ,c ,ck,Ck+l,.. .,IC), ck C [c•,ck .

Edge ak connects vertices Ak and Ak+l, edge /3k - vertices Ilk and #k+1. (Here
AN+1 = pi and ILN+l = Al).

We also introduce the notation

sum(cl,... ,CN) = c1 + + CN (10)

which will be useful in what follows.
As explained above, it is clear that ak is mapped onto the boundary line

of Q2 corresponding to CoeftMaxk, and A3 is mapped onto the boundary line
corresponding to CoeffMin k. More precisely, we have

Lemma 5. The image of ak is the segment between fN(Ak) and fN(Ak+l) if
1/sUm(a(Ck)) does not change sign while ck E [c+, C], and the comple-

ment of the straight line to this segment otherwise. In other words, fN(ak )
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Fig. 6. Image of ak depending on the signs of y(Ak) and Y(Ak+l).

is a segment if plane cl + c2 + "". + CN = 0 does not intersect edge ak of box
B, and a complement of the segment otherwise (see Fig. 6).

Of course, the analogous statement holds for the image of 3ik. In what
follows, we will usually formulate only statements for Ak and ak, and omit the
analogous ones for iik and 13k.

Conclusion 6. fN(Ak) and fN(Ak+l) are connected by segment iff they lie
in the same (upper or lower) half-plane, i.e. if y(Ak) and y(Ak+X) have the
same signs.

Note further, that every one of the points fN(Ak) (fN(ltk)) is a point of
the concatenation of two boundary segments corresponding to
CoeffMaxk_ and CoeffMaxk (CoeffMintk_ and CoeffMink, respectively).

In order to make this precise and to assure that all boundary can be
described in this manner, the following theorem was proved.

Theorem 7. fN (cl, ... ,CN) belongs to the boundary of domain f2 iff there
exists k = 1,..., N such that (Cl,..., CN) = ak(Ck) or (Cl,.. .,CN) = (Ck)
for ck E [c, c+].

Again the proof (which is relatively long) is omitted the proof uses the
"topological" notion of point neighborhood, boundary etc.

Conclusion 8. In order to describe the boundary of the domain Q, it suffices
to move along the following contour in the space of coefficients

/ A2  -- A3  -• ... - AN \
A,1  14 (11)

\ AN - N- ... -- -2 /

Note that independently of the specific values of c- and ct (j = 1,..., N),

always only 2N (among 2 N) definite vertices and edges of B and in definite
order participate in the boundary of domain Q.

It remains to "fill in" the boundary of •2 with Q2 itself. Before we formulate
the main result, let us study an additional property of domain Q2 and its
boundary.
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Fig. 7. Convexity of vertex fN((Ak).

Lemma 9. The domain Q has only convex boundary vertices.

Indeed, it was shown above that a boundary vertex of Q of the form
fN(Ak) is the intersection of the lines with slopes 1/Coeffmvaxk- 1 and
1/CoeffMaxk and passing through points (k- 2, 0) and (k- 1, 0) respectively.
Note that the following equation holds:

CoefIMaxkl - CoeflMaxk= sum(Ak) = 1/y(Ak) (12)

Assume for example that fN(Ak) lies in upper half-plane, i.e., that y(Ak) > 0
(the analogous consideration can be done for the lower hyperplane). Then
CoeflMaxk-l > CoeflMaxk, and using Lemma 4 we get that in any one of
three possible cases (see Fig. 7) this vertex is convex.

§5. The Main Result - Description of the Domain fl

Theorem 10. The domain 9 has one of two possible forms depending on
whether sum(Al) = c+ + c+ +". +Nc and sum(i) = c-- c+... + c- has

the same sign or not.

Note that this condition is equivalent to the condition that the plane
C1 + c2 + - • + CN = 0 intersects the box B in the space of coefficients.

Case 1. If sum(A1) and sum(pi) have the same sign, then Q is a convex
bounded polygon inside the contour (11), (see Fig. 8 and 9 - left parts. In the
figures we will write Ak instead of fN(Ak) in order to make the figures clearer
and more compact).

Indeed, let us assume that sum(yji) > 0. Then y(Ak) > 0 and Y(Ak) > 0
for every k = 1,... , N (all vertices ofQ lie in the upper half-plane). According
to Conclusion 6, the boundary of Q in this case consists of segments which
form a convex (Lemma 9) bounded polygon.

Case 2. If sum(tIl) < 0 and sum(Al) > 0, then sum() changes its sign exactly
once when upper or lower chain of the contour (11) is traversed, say at the
segment ak = [Ak, Ak+l] at the upper chain and segment f3p = [jup,,,p+j] at
the lower chain. Then the domain Ql is a union of two convex unbounded
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0 1 k-1 N-i

Fig. 8. The domain Q2 in the general case.
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Fig. 9. An example of the domain Q in the 3D case.

polygons. The first is inside the part of the contour that belongs to the upper
half-plane, and the second is inside the part of the contour that belongs to
the lower half-plane.

Upper and lower parts are bounded by infinite rays with the same slopes
(corresponding to CoeflMaxk and CoetfMinp), i.e. it is a convex bounded
polygon in the projective plane (see Fig. 8 and 9 - right parts).

§6. Example of an Affine Subspace of Lower Dimension

We now show how the general result can be applied to the construction of
p-flats of lower dimensions, for the "approximate" line in 3D case. For ex-
ample, if we would like to describe the range of the indexed point j'13 -

( 2C31
3

} f1311 ) which enters in the representation of the line, then
{13)3 ,representation line

c 1 -I-c 3  C1 -+C 3

we can reduce it to the consideration of f3 by putting c2 E [0, 0]. We get "void"
connections instead of edges a2 and /2, and finally get a convex quadrilateral
instead of convex hexagon (see Fig. 10).
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,:2

Fig. 10. Range of jt 12 - the first indexed point corresponding to line in 3D case.
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