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Dealing with Topological Singularities in
Volumetric Reconstruction

H. Lopes, L. G. Nonato, S. Pesco, and G. Tavares

Abstract. In this work we introduce a new representation for 3-dimen-
sional stratified manifolds based on Morse theory. This representation,
which we call Handle-Strata, includes a new data structure and a set of
operators. Applications of this representation on the volumetric recon-
struction from planar sections are presented.

§1. Introduction

Given a set of planar sections of an object, by definition a smooth 3-dimen-
sional stratified manifold, the volumetric reconstruction problem consists in
building a geometric model that is an approximation for this object. In this
paper we work with piecewise-linear approximations.

There are several strategies for solving the 3-dimensional reconstruction
problem, such as: heuristic, voxel, implicit, parametrical and optimal. Some
of these techniques build the surfaces, which are the boundary of the solid
object, while others generate a 3-dimensional cell decomposition of the object
volume. Two of the main softwares in this area are the 1) Nuages software
[8], developed by the PRISME project at INRIA Sophie Antipolis based on
surface reconstruction and Volvis [11], and 2) software developed by the VolVis
project at the Visualization Lab, Computer Science Department, SUNY at
Stone Brook based on voxel reconstruction.

Three problems are intrinsic to the reconstruction process, namely: cor-
respondence, tiling and branching. Correspondence consists in defining the
connected components of the model. Tiling means to triangulate the strip
between two adjacent slices with respect to some criteria. The branching
problem is related to the identification of the object's singularities.

Boissonnat introduced an important heuristic technique based on com-
putational geometry concepts of proximity [1]. This technique makes use of
the 3-dimensional Delaunay Triangulation and Voronoi Diagram to generate
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the geometric model. For a definition of Voronoi Diagram and Delaunay Tri-
angulation of a discrete set of different points in ]R3 see [3].

The advantages of using the Delaunay triangulation in reconstruction
problems are: regions which are geometrically well positioned, with respect
to some proximity measure can be found through topological tests; a volu-
metric triangulation connecting the regions is automatically generated; the
volumetric triangulation is appropriated for applications in simulations.

However, without a suitable object representation, the advantages above
cannot be fully realized. One of the main reasons is that the representation has
to deal with the topological singularities that may appear during the process of
reconstruction or even in post-processing applications, e.g., in applying finite
element methods to deform the objects.

The main purpose of this work is to introduce a new representation (data
structure and its operators) for the cell decomposition of an object. This
representation is called Handle-Strata (HS-Rep for short). A second goal is
to discuss the applications for this new representation in the reconstruction
process.

The paper is organized as follows. Section 2 introduces the Handle-Strata
representation. Section 3 discusses one reconstruction method based on De-
launay Triangulation, and identifies the role of singularities in the reconstruc-
tion process. Section 4 shows the applications of this new representation to
volumetric reconstruction. Finally, in Section 5 we show images of some re-
constructed objects.

§2. Handle-Strata Representation: Data Structure and Operators

In [2], Castelo, Lopes and Tavares introduced a representation for surfaces with
boundary based on Morse theory [4]. Lopes and Tavares in [6] extended it to
deal with 3-manifolds with boundary. In [9], Pesco devised a representation
for stratified surfaces also on Morse theory.

The representation we introduce in this paper is for the 3-dimensional
cellular decomposition of an object in 1R3. The HS-Rep is an extension of [9]
to deal with stratified 3-manifolds. A 3-dimensional cellular decomposition of
a subset KC in ]R3 is a collection C of i-dimensional cells (i = 0, 1, 2, 3) in iR 3

under the following conditions:

1) K = U{o E C},

2) If a and T E C then a n T- E C, where this intersection is either empty or
a sub-cell of both a and T,

3) Any compact subset of C intersects only a finite number of cells.

A subset M C R 3 is said to be an n-dimensional combinatorial mani-
fold with boundary (n=0,1,2,3) if it has an n-cell decomposition in which the
neighborhood of each point is homeomorphic either to an n-sphere or to an
n-semi-sphere. The 0,1,2 and 3 dimensional manifold will be called, respec-
tively, point, curve, surface and volume. A combinatorial stratification of a set
K C R 3 is a chosen finite collection of combinatorial submanifolds with bound-
ary such that their union is K and the intersection of two of its elements
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Fig. 1. Global Elements.

belongs to the cellular decomposition. Each manifold in this combinatorial
stratification is called a stratum. A stratum could be a point, a curve with or
without boundary, a surface with or without boundary or a 3-manifold with
boundary.

In this paper, an object is defined as a set 0 C R 3 endowed with a 3-
dimensional combinatorial stratification.

Now we describe the data structure behind the HS-Rep for the cell de-
composition and the stratification of an object. The data structure nodes are
classified in three types: strata, local cells and global cells.

"* Strata nodes (Point, Curve, Surface and Volume) describe the manifold

components of the object stratification.

"* Local cell nodes represent the cells of a stratum. For instance, a curve
has two types of local cell elements, the curve-vertex and the curve-edge.
A surface has three types of local cell nodes: surface-vertex, surface-edge
and surface-face. Also, there are three kinds of local elements for volumes:
volume-vertex, volume-edge and volume-face.

"* Global cell nodes (Global Vertex, Global Edge and Global Face) are used
to represent the cellular decomposition of the object. Also, global cell are
used to identify the local cells of different strata. A global cell is said to
be singular if it has more than one local cell associated with it. Thus, on
this data structure the singularities are explicitly represented.

In Figure 1 some examples of the use of the global vertex, global edge and
global face cells are shown. In Figure 2 we have the hierarchy scheme of the
data structure associated with the HS-Rep.

The main characteristic of this new data structure is the explicit repre-
sentation of the object stratification. The stratification allows the represen-
tation of singular objects and manifolds of different dimensions in the same
environment. Those manifolds are linked together through the global cells.
One advantage of using objects as defined in this paper is that it keeps to a
minimum the redundant information stored in each cell.

The representations introduced by Weiler [12] and Gursoz [5] also deal
with singular objects (non-manifolds), but they don't identify manifold com-
ponents.



232 H. Lopes, L. Nonato, S. Pesco, and G. Tavares

12 :!i

SiI

I

Fig. 2. HS-Rep Data Structure.

A set of operators to build and unbuild an object on this representation,
called Morse operators, will now be described. These operators are validated by
the Piecewise-Linear Handlebody Theory [10] and they correspond to gluing
handles on manifolds with boundary. Morse operators are divided in two
groups: local and global operators. Local operators build and unbuild strata.
Global operators perform the union of strata.

The local building operators are used to identify two boundary m-cells
(m = 0,1, 2) of a respective regular (m + 1)-dimensional manifold. The local
building operators for curves create an interior vertex by the identification of
two boundary vertices, which can be both on the same curve component, or
on different connected components.

There are five situations where two boundary edges of surfaces can be
identified. For each one a local building operator is defined. These five cases
are distinguished by the following criteria: 1) the two boundary edges don't
have vertices in common but they are on different surface components; 2) the
two boundary edges don't have vertices in common but they are on different
boundary curve components of a surface (on this situation, a genus is created
on a surface); 3) the two boundary edges don't have vertices in common but
they are on the same boundary curve; 4) the two boundary edges have only one
vertex in common and, finally, 5) the two boundary edges have two vertices
in common. More details on those operators on surfaces can be found in [2].

For 3-manifolds, there are also five situations where two boundary faces
can be identified. Each case defines a local building operator for 3-manifolds.
These cases are distinguished according to the following criteria: 1) the two
boundary faces are on the same connected component of the manifold; 2) the
two boundary faces are on the same boundary surface component; the two
boundary faces have or have not edges in common. A detailed discussion of
these operators for 3-Manifolds can be found in [6].
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Fig. 3. Edges of T on a planar section.

The global operators identify m-dimensional global cells (m = 0, 1, 2).
Those operators make the union of different strata through the use of the
global elements on the data structure.

§3. Volumetric Reconstruction from Planar Sections

In this section a heuristic based on the Delaunay Triangulation for the volu-
metric reconstruction is discussed. This heuristic was introduced in [7] and is
now rediscussed in terms of the representation introduced in this paper.

Here the reconstruction process will be restricted to two consecutive pla-
nar sections. The object is built from contours in the planar sections by
applying the appropriate heuristic to the Delaunay triangulation. These con-
tours are simple polygons that bounds the planar regions to be connected,
and can be oriented coherently.

The first phase of the reconstruction process generates a 3-dimensional
Delaunay triangulation that contains all edges of the contours on two consecu-
tive slices. This triangulation will be called the restricted Delaunay triangulation
of the slices, and will be denoted by T. To obtain such a triangulation, the
following algorithm has been devised:

1) Build a 3-dimensional Delaunay triangulation V using the vertices of all
contours,

2) Mark the edges of the contours that are not contained on 5,

3) Subdivide all marked edges, inserting new vertices on the contours,

4) Make local modifications on D to obtain a new Delaunay triangulation
that includes those new vertices,

5) Repeat these steps until the triangulation contains all contour edges.

Boissonnat [1] shows that the missing edge subdivision strategy, used in the
above algorithm, obtains a Delaunay Triangulation that includes all contour
edges.

The second phase of the reconstruction process classifies the edges of T
contained in the planar sections as internal, external or contour edges accord-
ing whether they are internal, external or on the contours. Figure 3 shows a
set of contours and the external, internal and contour edges of T that are on
a planar section.

To generate a model, which satisfy the resampling condition, i.e. whose
intersection with the given planes corresponds exactly to the same given con-
tours, it is necessary to identify the connected components and modify the
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Fig. 4. Singular edge coming from a reverse tetrahedron elimination.

Fig. 5. Tetrahedron subdivision avoiding singular edge creation.

triangulation. For this we will introduce the concept of reverse tetrahedra
and geometrically well positioned contours.

A tetrahedron of the triangulation T is called a reverse tetrahedron if
they have edges on different slices which are not contour edges. Two contours
on consecutive slices are said to be geometrically well positioned if they are
connected by a reverse tetrahedron in T.

Intuitively, it is appropriate to maintain on the same connected compo-
nent contours based on distinct slices which are geometrically well positioned.
In the heuristic introduced in [7], reverse tetrahedra play an essential role on
the 3-manifold components definition because they identify when two contours
are connected to each other.

A singular edge on T is defined as an edge whose associated link is not
homeomorphic either to a sphere or to a semi-sphere on the corresponding
3-dimensional manifold.

Next we can use the representation introduced above to deal with the
branching problem. We propose a heuristic using singular edges which at the
end generates a triangulated manifold between the slices:

1) Remove all tetrahedra with at least one external edge. The removal of
one tetrahedron may generate a singular edge, see Figure 4.

2) Identify singular edges.

a. If the singular edge is interior to the contour, reinsert the corre-
sponding reverse tetrahedron, subdivide its external edge and push
the new vertex to a position in between the slices, see Figure 5. The
role of this translation is to guarantee the resampling condition.

b. If the singular edge is on a contour, split the connected components
as in Figure 6.

Finally, the whole object is reconstructed by putting together the objects built
between consecutive slices.
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Fig. 6. Avoiding edge singularity on a contour edge.

§4. HS-Rep Applications to Volumetric Reconstruction

The algorithm of Nonato and Tavares [7] has no explicit data structure deal-
ing with edge singularities. Thus, the main contribution of this section is
to present several instances where the HS-Rep representation simplifies the
reconstruction process.

Initially, all contours are created on the data structure using the building
operators for curves. The vertices of these contours are used to build the initial
3-dimensional Delaunay triangulation 2D. After that, the contour vertices are
identified with the vertices of D through the global vertex operator.

To verify that a contour edge is on the triangulation 2D, one has to look at
the star of each global vertex and check for incidence to verify if this contour
edge is on the boundary surface of the volume. If the contour edge is on
the boundary surface then it is associated with the corresponding contour
edge on the slice curve by using a global-edge building operator. Otherwise,
the contour edge must be subdivided and the Delaunay triangulation will be
locally modified to include this new point. This process will continue until
the triangulation §T, which contains all contour edges, is obtained. The non-
contour edges whose vertices are on the same slice can be classified either as
internal or external traversing the list of edges of the boundary surface of T,
which is then explicitly represented on the data structure.

Section 3 points out that the first step in the identification of the con-
nected components is the elimination of the tetrahedra with at least one exter-
nal edge. To remove a tetrahedron, split its internal faces into boundary faces
using the local Morse operators for 3-manifolds. To reconstruct it as a man-
ifold, singular edges have to be detected. Global singular edges are detected
by performing a counting on the number of incident 3-manifold strata.

Now local building operators for 3-manifolds are used to insert tetrahedra
and subdivide its edges. The new vertices added in this subdivision are trans-
lated to a position inbetween the slices. When the singularity is a contour
edge, a global operator is used to split the manifold components.

Finally, the objects obtained on consecutive slices are glued together. The
process of gluing those objects consists in applying local building operators to
all boundary faces on the contour interior.

The Handle-Strata computational environment is suitable for dealing with
either the strategy given by Nuages [8] or Nonato and Tavares [7]. Moreover,
this representation is well suited for4 integrating different techniques under the
same common topological kernel. Issues like graphics interface, visualization,
objects physical properties, deformations, and so on, can now be addressed as
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Fig. 7. Reconstruction of the bitorus' slices using Nonato and Tavares heuristic.

Fig. 8. Reconstruction of bitorus' slices using Nuages.

Fig. 9. Reconstruction using, respectively, Handle-Strata and Nuages.

attributes or applications of the Handle-Strata representation.
The examples below come from three slices of a bitorus, in which the

bottom and the top slice have two curves and the intermediate slice has only
one curve. For these images, only the boundary faces not on the slices are
visualized. In Figures 7 and 8 we show the input slices and two views of the
models reconstructed using, respectively, the proposed algorithm and that of
Nuages.

Nuage's reconstruction inserts edge singularities at an intermediate level.
The reconstruction using Handle-Strata avoided that singularity through
tetrahedra insertion and subdivision.

The second example take two slices of a torus, in which the one on the
top has two contours that are geometrically well positioned with the unique
contour on the bottom slice. The three pictures of Figure 9 show, the slices,
our reconstructed model, and Nuage's result, respectively.

The intersection of the bottom plane with the model created with that
of Nuages is not the original curve, i.e, it does not satisfy the resampling
condition. The new heuristic creates a saddle in order to avoid this singularity.
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Fig. 10. Spine Vertebra Reconstruction.

Fig. 11. Lung Reconstruction.

Fig. 12. Sugar Loaf Reconstruction.

The execution time and the number of tetrahedra in the final objects for
both algorithms are essentially the same.

§6. Examples

Figure 10 shows the reconstruction of a Spine Vertebra. Figure 11 shows the
reconstruction of a lung. Figure 12 shows an example of a terrain reconstruc-
tion given by its contour levels.
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