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Comparison of Different Multisided Patches

Using Algebraic Geometry

K~stutis Kardiauskas and Rimvydas Krasauskas

Abstract. Different constructions of multisided surface patches (due to
Sabin, Hosaka-Kimura, Warren, Loop-DeRose, etc.) are studied via con-
sidering base points of their parametrizations. This analysis shows hidden
interrelations between various cases and enables to find new efficient con-
trol point schemes in more general situations. In particular, toric patches
are introduced.

§1. Introduction

The problem of smooth filling of m-sided holes arises in many modeling sit-
uations. It is solved using various methods: recursive subdivision, surface
splitting, data blending and control point schemes. We consider here only
the case when a m-sided patch is defined via control points as a single piece
bounded by B6zier curves of degree n. M. Sabin [11] introduced 3- and 5-sided
patches bounded by conics (n = 2) and suitable for an inclusion in B-spline
surface. Hosaka and Kimura [2] proposed the same type of patches with n = 3.
Zheng and Ball [15] extended the previous constructions to arbitrary degree
n. In the same fashion, 6-sided patches were constructed (see [2,12,15]). Un-
fortunately, these 6-sided patches seems to be nonrational. Loop and DeRose
[9] introduced rational S-patches, and used them in [10] for building Sabin
and Hosaka-Kimura-like patches (n = 2, 3) with arbitrary number of sides m.
As far as we know, Warren was the first to introduce the method of blowing
up base points (well-known in algebraic geometry) to the CAGD community.
He used it in [14] for creating 5-, 6-sided patches. Analysis of mentioned ap-
proaches and the convex combination method (cf. Gregory [1]) shows that
m-sided patches for m > 4 should be rational. Hence it is natural to use
theoretical results from algebraic geometry concerning rational surfaces. The
method of base points enabled Kar~iauskas [3] to build well structured ratio-
nal 5-sided patch with actually the same properties as the original Warren
hexagon. In [4] these patches are used for creating 5- and 6-sided Sabin and
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Hosaka-Kimura-like surface patches with boundary curves of arbitrary degree
n. Similar patches over a regular m-gon for any m (except 4) and for arbi-
trary n are obtained in [5] also using the base point method. The patches in
[4, 5] have lower degree parametrization than previous ones. We call them
T-patches. Moreover, the base points method is good for building bridges
between various approaches, especially in pentagonal case. In 6-sided case
the relations are more complicated. On the other hand, it appeared that this
hexagonal patch belongs to a special class of so-called toric surfaces, which
were studied in detail in algebraic geometry. First applications of toric vari-
eties in CAGD were demonstrated by Warren [14] and Krasauskas [7].

In this paper we describe initially hidden interrelations between pentago-
nal Sabin, Hosaka-Kimura and Loop-DeRose patches via the T-patch concept.
Six-sided patches are considered using both base points and toric methods.
Five- and six-sided cases are actually most important (beside triangular and
rectangular patches) in geometric modeling and at the same time most conve-
nient from the algebraic geometry point of view. Here we only outline results.
Full proofs can be found in papers [4, 5, 8] of the authors. Relations between
triangular Sabin, Hosaka-Kimura and Loop-DeRose patches are described in
[5]. Algebraic version of convex combination patches is presented in [6].

§2. Notations and Definitions

In order to consider several variants of multisided patches defined via control
points, we recall the most general concept of a rational patch.

Definition 1. A rational surface patch is a mapping F : D -+ IRk defined on
a domain D C R2 by the formula

F(t) = EI-I Wqpqfq(t)
EqE1ZWqfq(t) (1)

where polynomial functions fq labeled by some set I are called basis functions,
the points Pq E Rk are control points, and the numbers wq are their weights.

The Sabin and Hosaka-Kimura-like patches (see [2,4,5,10,11,15]) behave
like tensor product surfaces along their boundaries, and can be connected
smoothly with surrounding rectangular patches. We denote a patch of this
type by SHKn, where m is a number of boundary curves and n is their degree.

Let wo,wj,... ,wm.- be the vertices of a regular m-gon with a center
w and let n be a fixed natural number. For each triangle with the vertices
w, w,,w,+,, 0 < s < m - 1, the points

w,. =iw+ ws+ n-i-itws, i,jŽ0, ij+ _n, (2)n n n

linked together form a triangulation of an m-gon (see Fig. 1). The set of all its
vertices is denoted by Cn . It is convenient to enumerate them by the triples

(s,ij), 0<s<m-1, 0<i<n, O<j:<n-i,
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m=5, n=2 m=6, n=3

Fig. 1. Control point schemes of T-patches.

where triples (s, i, n-i) and (s+l, i, 0) are identified (the first index s is treated
in a cyclic fashion). Indices s, i, j correspond to labeling in the formula (2).
The graphs £C define a combinatorial structure on the control point nets of
T-patches.

The domain of some patches is a regular m-gon. In this case we assume
linear functions have inward-oriented normal vectors. For 0 < s < m - 1, we
write is for the function defining a line ,w-w+1. An intersection of the lines
w,-l8 w and tosws+2 is denoted by b,. By l, we denote a function defining
a line b,-lb,.

Using the blowing up method (see [3,13]) a 5-sided patch is defined via ba-
sis functions vanishing simultaneously at the two vertices vi, v2 of the domain
triangle Avov 1v 2. A 6-sided patch is defined via basis functions vanishing si-
multaneously at all three vertices. In these cases we denote by 10, 11, 12 the
barycentric coordinates of a point with respect to the triple v0 , v 1 , v2 . The
infinite points corresponding to the lines Voy 1 and Vov 2 are denoted by el, e 2

respectively.

Definition 2. A function f has a zero of multiplicity Y at a point p if it
vanishes at p together with all partial derivatives up to the order ft - 1. A
point p is a base point of multiplicity p' of a rational map (1) if all basis
functions fq have a zero of multiplicity pt at p.

For a set of planar points X - {PO, . . . ,p.}, we denote by P(k, A, X) the
linear space of polynomials of degree k which have zero of multiplicity A at
all points Po, . . . , p,

§3. T-patches

Defining 5- and 6-sided T-patches, we set I = Q• and I = Q respectively.
Various type of basis functions for 5- and 6-sided patches are defined using
the following scheme. Assume there are m + 1 functions ho, hi,..., hm-1, h
(m = 5,6) and positive numbers k., 0 < i < n, 0 < j • n - i, satisfying the
symmetry conditions j= , For q - (s, i, j) E C' , the functions fq
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are defined by the formula

fq = V.jh 'n-,- hs+lh' (3)

Now we specify the functions h8, h.

Definition 3. Five-sided T•n-patch and six-sided Tfn-patch are defined over
a triangle via the formulas

f hf = l, h1 =1011(lo + 1), h 2 = 1112, h3  27
5: h4 = 1012(10 + 12), h = 101112, (4)

h0 = 11 hi - o h 2 = 12112, h3 = 1112

h 4 = I02, h 5 = 1212, h = lolll2.

A five-sided Tvn-patch and six-sided Ti-patch are defined over a regular pen-
tagon and hexagon, respectively, via

4

T : h,=,+l+2l+3ls S 1=0,1,... ,4, h=IJJ, (5)

s=0

5

S: hs = ',++2Ps+Js+4, s=o,1,. .,5, hz i-s.

If V = (), the boundary curves are B6zier curves of degree n. So the
boundary curves are integral if their weights are equal to 1, though the patches
are rational for any choice of the other weights.

From the designers point of view, it is convenient when a cyclic change
of the input data does not change a patch as an image in 1R3 . The Ti-

and T6-patches are symmetric by definition. The T5- and Tv-patches are
also symmetric (see [4, 5]). Their cyclic reparametrizations are given by the
birational transformations of the domain triangle (Cremona transformations)
of order 5 and 6 respectively.

Remark 4. It is shown in [4] that Ti'- and T6-patches give the same class

of the surfaces as T5- and T6-patches. So we actually have two kinds of

parametrizations of 5- and 6-sided surfaces. The T5- and T6-patches can be
easier handled using standard methods, since they are defined over traditional
symmetric domain. The Tr7- and Tv-patches are more convenient from the
algebraic geometry point of view. For example, the latter approach gives the
third type of parametrization of T-patches, which is suitable for an efficient
plotting: T'-patch can be represented as a collection of three B6zier patches
of bidegree (2n, 2n); T•n -patch can be represented as a collection of six B6zier
patches of the same bidegree.

The principles of blowing up and plotting To-patches are shown in Fig. 2.
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Fig. 2. Blowing up and plotting T•n-patches.

Lemma 5. The basis functions of all T-patches are linearly independent.
Moreover, the spaces P(3n, n, {v 1 , v 2 , el, e 2}), P(3n, n, {v 0 , vj, v2 }), P(5n,
2n, {bs, s = 0,..., 4}) are generated by the basis functions of the T5n-, Tn-

and Tv-patches respectively.

Lemma 5 enables us to establish algebraic relations between different
surfaces.

§4. Interrelations Between Pentagonal Patches

We denote by U5 a surface in R 5 defined via equations x, - 1 + x5 +2x,+ 3 =

0, s = 1,.. . , 5 (the index s is treated in a cyclic fashion). This surface
was introduced by Sabin [11]. A domain D for the pentagonal patches from
[2,11,15] is a region in U5 with x, > 0, s = 1,..., 5.

The interrelation mappings are defined via formula (1), assuming that 1 =
V, kl 0 = 1 and all weights are equal to 1. We set for simplicity p. = Poo, P =
Pooo, and denote r0 = (0, 1, 1, 1, 0), r? = (0, 0,1,1, 1),..., r4 = (1, 1, 1, 0, 0),
r = (2/3,...,2/3) (r, are the corner points of the Sabin domain). By c is
denoted a barycenter of the triangle AvovIv 2.

Definition 6. Define rational mappings H5, 115 :R 2 _' JR2 and G5 , G5
R2 

-R 51 as follows. H5 and G5 are defined fixing basis functions (4) with
k10 = 5(v¶ - 1)/2 and taking control points p. = w,, p = w and p. = rs,

p = r respectively. H15 and G5 are defined fixing functions (5) with k'o =

3(V5- + 1)/2 and taking control points po = vo, P, = VI, P2 = v1, P3 = V2,
P4 = v2, p = C and p. = rs, p = r respectively.

Theorem 7. The mappings G5 and d 5 define parametrizations of the surface
U5. They map triangular and regular pentagonal domains respectively onto
the Sabin domain. Moreover, G5 o H15 = G5 , H5 o H5 = id, H5 o H 5 = id.
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Corollary 8. Five-sided Sabin [11] and Hosaka-Kimura [2] patches can be
represented as T53- and T4-patches respectively.

Proof: The basis functions of the Sabin and Hosaka-Kimura patches are
special polynomials of degree 12 and 20 respectively, which sum to 1 on U5.
Calculations (with MAPLE) give that their compositions with G5 have the
form Ag, and Bgp respectively, where A, B are some rational functions, g, G
P(9,3, {Vl, v 2, el, e 2}), gp E P(12,4, {vl, v2, el, e 2}). Now the proof follows
from Lemma 5. El

Notice, SHK'-patches in [4] can be represented as Tv-patches. Let 1 =

{1, 2,3,4,5}, f. = lsls+lls+2, s E -", Pi = (1,0,0,0,0),..., P5 (0,0,0,0,1).

If all weights are equal to 1, the formula (1) defines a map L ] R2 , R5.
An image of the map L is denoted by U5. The surface U5 is used in [9] for
a definition of 5-sided S-patches. A domain of 5-sided S-patch is a regular
pentagon.

Proposition 9. A five-sided S-patch of depth n over regular pentagon can
be represented as Tv-patch.

Proof: The basis functions of an S-patch of depth n (see [9]) are the compo-
sitions of the map L with the homogeneous polynomials of degree n. They are
polynomials in P(3n, n, {b,, s = 0,..., 4}). Multiplication of the basis func-
tions by C', where C = 0 defines a circle going through the points b,, does
not change the patch. New polynomials are in P (5n,2n, {bs,s = 0,...

Hence the original S-patch can be represented as Tv-patch. Li

We have seen, that Sabin and Hosaka-Kimura patches can be considered
as the patches over a regular domain or over the Sabin domain in U5 . Simi-
larly, an S-patch can be considered over the domain in U5 with nonnegative
coordinates. We call it a Loop-DeRose domain.

Proposition 10. There exists a mapping p : U5 -* U5, which maps the Sabin

domain onto the Loop-DeRose domain and L = p o G5 .

Proof: Define p as a composition of the projective transformation

Yi= xi + Xi+ + Xi+4 - a(xi+i + xi+3 ) + a -2 i= 1,..., 5,

YO = (3- 2a)(xi + x 2 + X3 + X4 + x 5 + 2a).

(a = (v-h+ 1)/2) with the projection from a point on U5 : p: (yo,. .. ,Y5)

(yl/yo,...,y5/yo). EL

From the algebraic geometry point of view, the surface U5 is more univer-
sal in the algebraic constructions than U5. As a confirmation of this property,
we have that SHK5- and SHK5-patches in [10] can be represented only as T55-
and T6-patches, respectively.
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/ L H5
H5

Fig. 3. Interrelations of 5-sided patches.

Remark 11. The surface U5 plays a key role in the theory of 5-sided patches.
It would be interesting to investigate deeper geometric properties of U5. Here
are two of them: 1) as a surface in pRp5 it contains 10 lines; 2) exactly 5
conics go through a generic point of U5 .

A schematic of the interrelations between 5-sided patches is shown in
Fig. 3.

§5. Toric Patches

Here we present several results about toric patches obtained in [8]. Some
details can be found also in [16].

Consider a lattice &Z2 of points with integer coordinates in the real affine
plane JR2 . We call a convex polygon A C R 2 a lattice polygon if its vertices
are in the lattice 2Z2 . Edges 5i of A define lines hi(t) = (ni,t) + ai = 0, with
inward oriented normal vectors ni, i = 1,... , r. We choose ni to be primitive
lattice vectors, i.e. the shortest vectors with integer coordinates in the given
direction.

Denote by A = A n Zk a set of lattice points of the polygon A. It is easy
to see that hi(m) is a non-negative integer for all i = 1,... , r and m E A.

Definition 12. A toric patch associated with a lattice polygon A is a rational
patch TA with a domain D = A and basis functions

Schhi(m)hh2(m) ... hhr(I) (6)

indexed by lattice points m E A. Here cm > 0 are some coefficients which
may vary from case to case.
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Fig. 4. Examples of lattice polygons.

Example 13. B1zier surfaces and the Warren hexagon [13] are toric:
1) If A is a triangle with vertices (0,0), (d, 0) and (0, d), then TA with

c(ij) = d!/(i!j!(d - i - j)!) is exactly a rational B36zier triangle of degree
d, which parameter domain is scaled d times.

2) If A is a rectangle with four vertices (0,0), (di,0), (di,d 2) and (0, d 2),
then TA with coefficients c(ij) = (1,) (.2) is a tensor product surface of

bidegree (d1 , d2) with a scaled parameter domain [0, di] x [0, d2].
3) Let A be a hexagon A6 (see Fig. 4) then TA with appropriate coefficients

cm is the Warren 6-sided patch denoted by T• in Section 3.

Toric patches have similar properties as B6zier surfaces. They are affine
invariant, and have convex hull property. Every edge bi of the lattice polygon
A corresponds to a boundary rational B1zier curve with control points m C
bi = Zi n 2Z. In particular, its degree is equal to an 'integer length' of the edge
Si.

The following property is in some sense similar to the affine invariance of
the domain for B16zier surfaces.

Lemma 14. (Unimodular invariance of the domain.) Let two lattice poly-
gons be related via some affine unimodular transformation L(A) = A' (i.e. L
preserves the lattice 7Z2 ). Then toric patches TA and TA, with the same con-
trol points and weights are just reparametrizations of each other: TA = TA, oL.

In Fig. 4 we see a lattice hexagon A6 and an octagon A8 . Since they have
6- and 4-sided symmetry, corresponding toric patches TA for A = A6 , As have
the same symmetry.

Corollary 15. For m = 3,... ,8, the only symmetric (in the sense of Sec-
tion 3) toric patches may be 3-, 4- and 6-sided, for example, B6zier triangles,
tensor product surfaces of degree (d, d) and the Warren hexagon TA6 = T6.
In particular, the 5-sided Ti-patch cannot be toric.

Proof: These numbers correspond to cyclic subgroups in the group SL 2(2Z)
of unimodular linear transformations of the lattice 2Z. D]
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It is clear that an affine unimodular transformation L preserves area,
since det L = :1. It is convenient to use so-called normalized area which is
twice as large as the usual area in 1R2, since then area(A) is always integer for
lattice polygons A. The following result is well-known in the theory of toric
varieties (see [14] for an elementary proof).

Theorem 16. The implicit degree degTA of a toric patch TA does not exceed
area(A). It is equal to area(A) when the control points are in general position.

For example, deg TA6 = 6 and deg TA,- = 14 (see Fig. 4). Consider now
the more general parametrization of a toric patch F' : R_0 --ý ]Rk defined as
in (1) via basis functions

f1.(UU2,• U2 , Ur) = cmlh(m)uh2(m)...uhr(m), m•C A.

Definition 12 is obtained substituting variables ui by affine forms hi. Although
the domain R1_0 has dimension r, the image of F' is 2-dimensional in all cases
(cf. [8]). Hence, using various substitutions, one can get different interesting
parametrizations of the same patch. The simplest piecewise substitution

(•i(u,v)= F'(1 1u v, 1,..1), i= 1,...,r-1

4)r(u,v)=F'(v,1,...,1,u), 0<u,v_< 1,

defines a subdivision of the toric patch into r tensor product pieces. This
directly generalizes the Warren hexagon subdivision [13].

Acknowledgments. Both authors were partially supported by a grant from
the Lithuanian Foundation of Studies and Science.

References

1. Gregory, J. A., N-sided surface patches, in The Mathematics of Surfaces,
J. A. Gregory (ed.), Oxford University Press, 1986, 217-232.

2. Hosaka, M., and F. Kimura, Non-four-sided patch expressions with con-
trol points, Comput. Aided Geom. Design 1 (1984), 75-86.

3. Kar~iauskas K., Rational m-sided surface patches, in The Mathematics
of Surfaces VIII, R. Cripps (ed.), Information Geometers, 1998, 355-368.

4. Kar~iauskas K., On five- and six-sided rational surface patches, preprint,
1999 (http://www.mif.vu.lt/katedros/cs2/publicat/public.htm).

5. Kar~iauskas K., Rational m-sided Sabin-Hosaka-Kimura like surface pat-
ches, preprint, 1999 (http://www. mif. vu. lt/katedros/cs2/publicat/
public. htm).

6. Kar~iauskas K., Algebraic version of convex combination patches, in Pro-
ceedings of XL Conference of Lithuanian Mathematical Society, Technika,
Vilnius 1999, 178-182.



172 K. Kariiauskas and R. Krasauskas

7. Krasauskas R., New applications of real toric varieties in CAGD, Frei-
formkurven und Freiformfliichen, Tagungsbericht 23/1998.

8. Krasauskas R., Toric surface patches I, preprint, 2000.

9. Loop, Ch., and T. DeRose, A multisided generalization of B6zier surfaces,
ACM Trans. on Graphics 8 (1989), 204-234.

10. Loop, Ch., and T. DeRose, Generalized B-spline surfaces of arbitrary
topology, Computer Graphics 24 (1990), 347-356.

11. Sabin M., Non rectangular surfaces for inclusion in B-spline surfaces, in
Eurographics'83, T. Hagen (ed.), 1983, 57-69.

12. Sabin M., A symmetric domain for 6-sided patches, in The Mathematics
of Surfaces IV, A. Bowyer (ed.), Clarendon Press, 1991, 185-193.

13. Warren J., Creating multisided rational B~zier surfaces using base points,
ACM Trans. on Graphics 11 (1992), 127-139.

14. Warren, J. A bound on the implicit degree of polygonal B~zier surfaces,
in Algebraic Geometry and Applications, C. Bajaj, (ed.), 1994, 511-525.

15. Zheng J. J., and A. A. Ball, Control point schemes over non-four-sided
areas, Comput. Aided Geom. Design 14 (1997), 807-821.

16. Zub6, S., n-sided toric surface patches and A-resultants, Comput. Aided
Geom. Design, submitted.

K. Kar~iauskas and R. Krasauskas
Dept. of Mathematics and Computer Science
Vilnius University
Naugarduko 24, 2600 Vilnius, Lithuania
kestutis .karciauskas~maf .vu.It
rimvydas .krasauskas~maf .vu. It


