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Monotonicity Conditions of Curvature
for B6zier-de Casteljau Curves

Jean-Charles Fiorot and Laurent Schiavon

Abstract. In this paper, we deal with the monotonicity of curvature
problem for B6zier-de Casteljau curves. We focus more particularly on
the cubic case. A condition about decreasing curvature at the origin of a
cubic curve is given so that it implies decreasing curvature at every point.
The corresponding cubics are determined by their control polygon.

§1. Introduction

The problem discussed here concerns the shape control of curves; mainly how
to obtain curves with a monotone variation of curvature. The aim is to find
the widest class of curves with monotonely increasing or decreasing curvature
variation. This problem mainly arises in car body shape design.

Let P be a n-degree B6zier-de Casteljau planar curve defined on [0, 1]
given by its control polygon {P 0 , P 1 ,..., Pn}. Let us consider 1 =1 PoP, 1, and,

Vi =1,... ,n-1, set hi =1 PjPj+l I / I Pj-lPi land oi = (PjPi+1 , Pj-lPi). We
say that P admits the representation (hi,... , hn-1; (Pi, ... , 5 0n-1; 1). Higashi,
Kaneko and Hosaka [3] characterized the monotonicity of curvature when Vk =
1,... ,n - 1, hk -= h and SOk = yp : hcosWo > 1 and h < cos W are respectively
the condition of decrease and increase of the curvature. This model has been
used recently by Mineur, Lychah, Castelain and Giaume [4] to control a shape
when fitting a curve to a set of given data.

Here, we focus on the cubic case. From the representation (hi, h2 ; WOl, Wo2;
1) of P, we apply the de Casteljau Algorithm at t value belonging to the interval
of definition, and we determine by induction the parameters characterizing the
two segments given by the Subdivision Algorithm. This process enables us to
determine the curvature p. Then, we seek cubic curves for which decreasing
curvature at the origin implies decreasing curvature at every point. Such
curves are determined via the parameters r* = h 2l/hl, ol and Wo2. The study
falls into two cases : r* > 1 and r* < 1. For the second case, we give a more
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strict decreasing curvature condition at the origin in order to get the decrease
of p everywhere.

In the framework of Fiorot and Jeannin [1] and Fiorot, Jeannin and Taleb
[2], an attempt to extend these results to rational cubic curves has been made.

§2. de Casteljau Algorithm

Let P be a B6zier-de Casteljau cubic curve (BCc in short) defined on [0, 1] with
its control polygon {Po,P 1 ,P2 ,P3} and representation (hi, h 2; W1, 2 ;1). For

t e [0, 1], the de Casteljau algorithm gives the points p(j)j=o,.,3 fined

by the relation p(j-") _ (1 pU) +±tPj) and we obtain P(t) = Po(3). Now,
we set Vk = 1, 2,

(1) (p(i) p(2) pkp~l) 6 (l) P1)pk-l p(2)-p())ly , - 1kl - Pk -1, - k-1r_), k k k 1 -

Ip() p(2)(0 pk)-1 k-11
k Pk- 1 Pk(l) 1

and

pP)(' 2) )

(2) p(2 ( ,P(3 p'11)P b(2) p(1)p 1  ), A (3)p(2))

1Y1~* 0 R (100 0 -- 00 1 1 2 )

After some calculations, we obtain Vk = 1, 2,

= ((1 t) 2 + 2t(1 - t)hk cos SOk + (hkt)2 )½. (1)

Then,
exp(i,•1)) =((1 - t) + hkexp(icpk)t)/A(°), (2)

exp(ib•')) ((1 - t)exp(iPk) + hkt) /A4), (3)

( 1) = .+ P) [2,r], (4)

11 2t 1
ý10

-(1 -t) + 2t(1 - t)hl' COS 0 + (h(1))) , (6)
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exp(i'•y2 ) = ((1 - t) + h(l)exp(iV(1))t) /A 1 ), (7)

exp(i •2))= ((1 - t)exp(iw1)) + h(1)t) /A(' (8)

Remark 1. For t E [0, 1], the de Casteljau Algorithm splits the curve P into
two segments: the left one is the restriction of P to the interval [0, t] defined

by the control polygon {P 0 , p(1), p( 2), p(3)} which admits the representa-

tion (A(°), A(1)' ,(1) y(2),-It), whereas the right one is the restriction to [t, 11
defined by {Po(3), 1 p)(1) P3} which admits (h(1)/A(1),h21A(°); 6(2) 6(1).

1 0 1 / 1 2 7 1 , •2 ,

l, - t)) as a representation.

§3. Curvature Characterization

We determine the curvature radius R and the curvature p = at every point
of the curve P via the parameters mentioned above. Let us remember that
the curvature radius R is determined by the approximation R ý-_ -A, where
s denotes the arc length and a the angle of the tangent vector with a fixed
direction.

First, we give the expression of R at t = 0. Let us consider a value t near
0. We have the following approximations

As - (1 + A(°) ± 1)•1÷
Aa = _-y~i) _ (•2) _ _ si(71) +(2)).

By using (1) - (7), we obtain when t tends to 0

3 1
R(0) -- 2 hi sinVi" (9)

Now for t E (0, 1], we apply (9) to the right segment whose origin is 0(3)

Then, the curvature radius at t is

R~) 3 _A(°)A( 1)1(1 -t)
R(t) = 2 (h)1/A(1)) si- t(2)

I 1 1 "U

Therefore, (8) implies

R(t) = - h•10)(hsl))3 (10)2 h(l) sin R()"

Application. Let us consider the case hl = = h and V01 = Wp2 = V with

so e [0, 1]. One can prove that Vt E [0,1], A(0) = A(')(- A), •o1) = • and
h•l) = h. Then, we obtain with (10), Vt E [0, 1], p(t) = 2h sin 5 /(31A 4 ).

Differentiating A = ((1 - t)2 + 2t(1 - t)h cos V + (ht) 2) ½, we deduce that
h cos W >_ 1 and h < cos V are respectively the condition of decrease and
increase of the curvature [3].
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§4. Decreasing Curvature Condition in the Case r* > 1

Let P be a BCc curve with representation (hi, h 2; ýl, ý2; 1), and let

(W1, W2) E [0, 1)2. For t F [0, 1] , we set r = A(1)/A(0 ). At t = 1, this
parameter is r*. Moreover, we define

A = sin(- 1 ) + (2)) sin(1yj) + (2))

sin 27('1) ' sin 2y(2)

At t = 1, we prove via (1) - (7) that these parameters are respectively

A- sin((pi + (P2) . _ sin(•i + WP2)

sin 2 1 ' sin 2n 2

Lemma 1. At t = 0 and t = 1, we have respectively the equivalences:

3hicos'pl - r*A*) 1 <=ý p'(0) <0 (11)

h2  3 1 - r*u) cos W2 4 p'(1) <0. (12)

Proof: We calculate p'(0) as limt-o (p(t) - p(O))/t via (9) and (10). We
obtain

p'(0) = p(0)(hl(h 2 sin(WI + W2) - 2 sin 'P - 6 sin 'o1(hl cos W, - 1)). (13)

Then, with the above definitions of A* and p*, we obtain (11). At t = 1, we
consider the curve P(1 - t) which has the representation (1/h 2, 1/h1; W2 ,'Pl;
h1 h21). E]

Remark 2. The equivalences (11) and (12) do not depend on the interval of
definition.

Lemma 2. Let P be a BCc curve defined on interval [tI, t 2] with the repre-
sentation (hi, h 2 ; V1, 'P2; 1). Let us suppose that r* > 1. Then,

p'(tl) < 0 rý p'(t2) < 0.

Proof- We have the successive inequalities

h 2 > h, > 2 r*A*- -1 1 -> r**)cos P0.
- 3 COS ýp1 2

The first one uses the definition of r*. The second one uses (11). From the
identity

sin 2 ('Pl + WP2) - sin 2(W1 - WP2) = sin 2'p1 sin 2'P2,

we deduce A*/M* > 1. After some calculations, we obtain the third one and
consequently (12). 0
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Fig. 1. Decreasing curvature domains for r* = 1, 1.5 and 3.

Lemma 3. Let P be a BCc curve defined on [0, 1]. With the previous nota-
tion and hypothesis, we have

r* cos(W1 + W2) - cos 29o1 Ž! 0 o* Vt E [0, 1], r > 1.
Proof: For t E [0, 1], we find that l()A()2 - (A°)4is positive if

(1 - t)2Ao + 2t(1 - t)A 1 + t 2A2 > 0

with SA0 = 2(r* cos('Pl + 'P2) - cos 2W,),
A1 = 2hi(r* cos W2 - cos Wl),
A2 = h2(r*2 - 1),

is positive. Then r* cos('P1 + W2) - cos 2W,1 _ 0. Conversely, this inequality is
equivalent to

(r* cos 2 - cos W1) cos W1 _Ž (r* sin W2 - sin '1) sin W1.

Considering the cases 'P1 •5 W2 and WP2 < WP1, we see that the coefficients of
the above Bernstein polynomial are positive. El

Proposition 1. Let P be a BCc curve defined on [0, 1] with the representa-
tion (hi, h2; W1, W2; 1). Let us suppose that r* > 1. We consider the domain

D1 = {(W1, W2) E [0, 2)r* cos(WP + W2) - cos2Wl > 0}.

'2'

For (W1, '2) E D 1, we have

p'(0) _< 0 -ý* Vt E [0, 1], p'(t) < 0.

Proof: The proof is a consequence of Lemmas 1 and 2. 0

The domains corresponding to different values of r* are described via the
following graphs in function of W1 (horizontal axis) and W2 (vertical axis). In
Figure 1, the white part represents the decreasing curvature domain whereas
the dark one denotes a domain where the decrease at t = 0 is not possible
(rWA* > 3). One can notice that the latter is empty when r* > 6. In the grey
part, we cannot say anything about the monotonicity.
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§5. Decreasing Curvature Condition in the Case r* < 1

With r* < 1, the condition p'(0) < 0 is too strict, so we consider the following
sufficient condition on decreasing curvature at the origin:

p'(0) :5 4 (1 - -1½) p(0)'

which is equivalent to

3 rA
2hi COS V 1- * (14)

If we set
3• hlcoswlll-I3]

23

(14) becomes r*a* > 1. Furthermore, we set Vt E [0, 1],

a=3 A(0) CO(1) I( rA\
2 131

A calculation gives a = (1 - t) + a*t.

Remark 3 . The inequality (14) does not depend on the interval of definition.

Lemma 4. Let P be a BCc curve defined on interval [t1 , t2] with the repre-
sentation (hi, h 2; Wi, (P2; 1) and r* < 1. Let us consider domain

D 2 = {(V1 ,W2) C [0, "[,r* cosW2 - cosl W1> 0}.
'2'

Then V (01,V2) C D 2,

p'(tl) !_ 4 1 - ) p(tl) =:' p'(t 2 ) <_ 0.

Proof: For (V1,W2) E D 2, we have

( r*A*) (i 1 CO V*u* 1COS Wlo 2 5 2 2

which, with (14), implies

h2 = r*hl 2 (1-r) -1  > 3 (- cos'2. W2-3 -cosW1 - -2 3)
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Lemma 5. Let P be a BCc curve defined on [0, 1]. Under the previous
hypothesis, we have

V('Pi, W2 ) E D 2 *Vt E [0,1], rCos y2) - Cos 1 ) _> 0.

(2) >(1) ndolyiProof: For t E [0, 1], we find that r cos -y - cos 71y >0 if and only if

(1 - t)(r* cos(W1 + 'P2) - cos 2W,) + hi(r* cos W2 - cos Pl)t > 0.

Then r* COS W2 - COS WP1 _ 0. Conversely, r* COS W2 - cos 01 > 0 and r* < 1
imply W2 •< W1. Then r* sin W2 - sin W, < 0. Consequently,

r*cos(Wl-102)-cos 2,1 =(r*cos (W1rkP2) -cos 2W1)cos, --(r*sinW2 -sinai)sin'Pi

is positive. [

Lemma 6. Let P be a BCc curve defined on [0,1]. Under the previous
hypothesis, we have V(Wl, W2) E D2,

hl(r*2a* - 1) + 2(r*a*2 cosW2 - cos W1) _ 0 ' Vt E [0, 1], ra > 1.

Proof: The last inequality is equivalent to deciding whether a fifth-degree
polynomial is positive. We verify that all its coefficients are positive but for
one. The positivity of this coefficient is equivalent to the first inequality in
the lemma. E]

Proposition 2. Let P be a BCc curve defined on [0,1] with the representa-
tion (hi, h 2; V1, W2; l). Let us suppose that r* < 1. We consider the domain
D2 as mentioned above and

D 3 = {((Pl,P 2) E [0, 2),hl(r*2a* - 1) + 2(r*a*2 cosP2 -cosWl) > 0}.
2

Then, V(Wl, W2) E D 2 n D3 ,

p'(0)_:54(1 -1 p(0) =: t E [0, 1], p'(t) 0_ .

Proof: The proof is a consequence of Lemmas 5,6 and 4. 11

Here, we describe the different admissibility domains D 2 nlD 3 (represented
in white) for several values of r* in considering that a* = 1/r*. As illustrated
in Figure 2, there is a domain continuity when r* is near 1 with the case
r* = 1 (Figure 1). When r* decreases, the domain gets smaller and smaller
and then it is finally empty for r* ý- 0, 33. If we take a* > 1/r*, the domain
size increases and tends to D2.
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6o 3 o 9 o 6 o Q 3 o

Fig. 2. Decreasing curvature domains for r* = 0.99,0.95,0.9 and 0* = 1/r*.

§6. Examples

Our results are illustrated by examples of BCc curves whose curvature de-
creases. For each curve, one quarter of the curvature radius is represented at
t values 0, 0.1, 0.2, ... , 1.

Example 1. r* = 1 and p'(0) = 0. The first curve with small angles (•, •)
and a length rate hi - 0.99 (Figure 3 (a)) is characterized by a small radius
increase. The second one has angles (1, M) and hi c- 1.36 (Figure 3 (b)).

Example 2. (V1, '2) = (•,) and p'(0) = 0. The curve with r* = 1.25
(Figure 4 (b)) is tighter than the curve with r* = 1 (Figure 4 (a)).

Example 3. r* = 1.5 and (P1,W2) = (Q5, E) We compare the curvature
radius increase at the origin for a curve (Figure 5(a)) with p'(0) = 0 (h, -
1.71) and another one (Figure 5 (b)) with p'(0) = -0.12 p(O) (h, - 2.05).

Example 4. We consider two curves with r* < 1 and a* = 1/r*: r*
0.95, (W'1, (2) = (E, E) and r* = 0.9, (W1,W2) = (E, E). The parameters
obtained by calculations (take the equality in (14)) are respectively h, -1 1.44,
p'(0) = -0.03 p(O) and hi ý- 1.28, p'(0) - -0.06 p(O) (Figure 6 (a)-(b)).

Fig. 3. (a) r* = 1, (01, o2) = (•, •), (b) r* = 1, (01, 2) = (•, •).
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Fig. 4. (a) r* = 1, (ý'i, V2) (3,), (b) r* = 1.25, ('1, W'2)= (-, •)"

7/

Fig. 5. r* = 1.5 and ('Pi, W2) = (R, ') (a) p'(0) = 0 , (b) p'(0) = -0.12p(O).

Fig. 6. (a) r* = 0.95, ('1, W2) -- (, -), (b) r* = 0.9, (VI, VP2) - (6, -).
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