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Curves from Motion, Motion from Curves

Rida T. Farouki

Abstract. Geometry and kinematics have been intimately connected in
their historical evolution and, although it is currently less fashionable, the
further development of such connections is crucial to many computer-aided
design and manufacturing applications. In this survey, we explore a variety
of classical and modern problems that illustrate how simple rules of motion
produce interesting curves and, conversely, the computational problems of
generating motions with prescribed paths and speeds. These encompass
the geometry of trajectories under centripetal forces; the transformation of
rotary motion into motion along general curves by mechanisms; real-time
curve interpolators for digital motion control; and the description of spatial
motions that involve variations of both position and orientation. Such case
studies illustrate some of the intellectual appeal, and practical importance,
of a sustained dialog between the study of curves and of motions.

§1. Preamble

Our intent in this paper is to survey the intricate web of historical connections
between geometry and kinematics, a theme that has played a key role in the
development of mechanics and analysis. In contemplating this theme, we are
obviously confronted by a profusion of interesting and fruitful topics - and
we are thus obliged to adopt a rather anecdotal approach.

Apart from its intrinsic interest, we choose this subject with the hope of
promoting greater synergy between modern-day problems of geometric design
and motion control. Modern CAD systems are mainly concerned with creating
"static" geometrical descriptions of artifacts, but the processes by which these
artifacts are actually fabricated often involve complicated motions of a tool -
e.g., a cutter in a milling machine, or a wire electrode in electrical discharge
machining - relative to a workpiece. Compared to the sophistication of CAD
models, current methods for motion planning in manufacturing processes are
often rather crude and naive. Thus, there is much scope for securing greater
precision and reliability, through the use of advanced mathematical methods,
in the relatively undeveloped field of manufacturing geometry.

The symbiosis between geometry and kinematics has deep historical roots.
Newton, in his Quadrature of Curves (1676), aptly characterizes it as follows:
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Lines (curves) are described, and thereby generated, not by the
apposition of parts but by the continued motion of points ... These
geneses really take place in the nature of things, and are daily seen
in the motion of bodies.

However, this has not always been a happy union. Insofar as it embodies both
spatial and temporal information, kinematics subsumes geometry. To upgrade
a curve into a motion requires the ability to rectify (or measure arc lengths of)
curves. As a basic philosophical tenet, Descartes held this to be impossible -
see §3 below - and he sought to banish all curves whose definitions explicitly
or implicitly assume rectifications from the "rigorous" domain of geometry to
the nascent (and less-exact) science of mechanics. Although, in modern times,
the philosophical/existential problem of rectification is no longer troublesome,
we must still address the computational difficulties it entails (see §3).

The antithesis of Descartes' attempt to divorce geometry from kinematics
would ultimately find its logical expression, in the context of the special theory
of relativity, with Minkowski's introduction [42] of the concept of "space-time"
as the most natural setting for the study of physical phenomena:

Henceforth space by itself, and time by itself, are doomed to
fade away into mere shadows, and only a kind of union of the two
will preserve an independent reality.

The recent introduction of the Minkowski metric of space-time into problems
of geometric design reveals a remarkable confluence of ideas concerning medial
axis transforms, Pythagorean hodographs, envelopes, and offset curves [43].

In this survey we shall attempt, through a series of anecdotal sketches, to
promote greater interest in the relationship between geometry and kinematics,
and its application to CAD/CAM problems. We commence in §2 and §3 with
a brief review of the manner in which curves may be defined, and the problems
that measurement of arc length incurs. Perhaps the simplest motion is that of
a particle experiencing a force toward a fixed center, of magnitude proportional
to a power of the radial distance r. As is well-known, Newton showed that an
r- 2 force of gravity explains the conic form of planetary and cometary orbits.
We shall see in §4, however, that this is just one aspect of a more profound
theory of motion under centripetal forces in Newton's Principia.

Mechanisms such as gears, cams, and linkages are used to transform forces
and motions in machinery. In §5 we discuss the four-bar linkage, a mechanism
that directly transforms rotary motion into motion on a general curved path.
CNC machines offer a more flexible approach to motion generation, based on
sophisticated servo-systems that drive linear or rotary axes in a coordinated
manner. In §6 we discuss the problem of real-time interpolators, which must
accurately and efficiently interpret the path and speed information to generate
"reference point" data required by the digital control algorithm.

The preceding examples are concerned with motion in Euclidean spaces.
A motion that involves not just positional but also orientational coordinates
(such as in 5-axis machining) may be regarded as the motion of a point in a
higher-dimensional, non-Euclidean (soma) space. Some subtle problems that
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arise with such motions are discussed in §7. Finally, §8 offers some concluding
thoughts on our theme of connections between geometry and kinematics.

§2. Curves and Motions

Analytic geometry has its origins in the computational investigation of curves
specified by suitable coordinate equations. There are basically two ways to
define a plane curve in terms of Cartesian coordinates (x, y). We may select a
predicate function, that indicates whether or not each point in the plane lies
on the curve - this is typically a bivariate polynomial f in the coordinates,
and the curve is the locus of points on which the polynomial vanishes:

f(x, y)=O. (1)

On the other hand, we may choose a pair of generating functions

x(t) , y(t) (2)

that produce an ordered sequence of curve points when evaluated at successive
values of a continuous "auxiliary variable" or parameter t.

Whereas the implicit description (1) is essentially "static," the parametric
form (2) offers a more "dynamic" characterization of curves - it embodies the
suggestion of motion along a curve, incurred by steady increase of the curve
parameter t. It is a mistake, however, to invest too much hope in the capacity
of parametric curves to adequately describe motions. Motion specification is
concerned as much with the instants in time at which a body assumes given
positions along a path, and corresponding velocities and accelerations, as with
the path geometry. A motion is really a geometrical locus in Minkowski space,
with one temporal and one or more spatial dimensions.

Of course, we can always interpret the parameter t as time, and equations
(2) then completely specify a motion. However, if we wish to use only "simple"
(polynomial or rational) functions, such motions are mathematical curiosities:
except in trivial cases, they are neither solutions to appropriate equations of
motion, nor do they represent motions of practical interest that we may wish
to impose on a given locus. To emphasize that the curve parameter generally
lacks any geometrical or temporal significance, we henceforth use the Greek
character ý to denote it, and we explicitly reserve t for time.

Connections between the study of curves and motions is a recurrent theme
in the history of science and technology. At the inception of analytic geometry,
motions offered an intuitive means to construct and analyze loci of increasing
sophistication: see, for example, the remarkably diverse historical applications
of the roulettes generated by the rolling motions of lines and circles (cycloids,
circle involutes, epicycloids and hypocycloids, epitrochoids and hypotrochoids)
discussed in [21]. Conversely, the conics of the ancient Greeks make a rather
surprising appearance in the solution to the premier problem of dynamics: the
determination of planetary orbits. In the modern computer era, the problem
of producing a desired motion along a given path is central to real-time control
of manufacturing, inspection, robotic, and other devices.
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§3. Towards an Impossible Ideal

Since speed on a curved path is the rate of change of distance with time, the
problem of rectification - i.e., the measurement of arc length - is evidently
critical to the description of motion. This problem, however, has been fraught
with computational difficulty since Descartes founded analytic geometry in an
appendix La gdom'trie [15] to the Discours de la mdthode pour bien conduire
sa raison et chercher la v&ritW dans les sciences (1637). He asserts that:

Geometry should not include lines (curves) that are like strings,
in that they are sometimes straight and sometimes curved, since the
ratios between straight and curved lines are not known, and I believe
cannot be discovered by human minds, and therefore no conclusion
based upon such ratios can be accepted as rigorous and exact.

Nevertheless, Descartes' dictum began to crumble almost immediately after
its enunciation, amid a flurry of counter-examples.

For example, Galileo [26] realized that, when a body is dropped into a hole
drilled through the center of a static Earth, it executes linear simple harmonic
motion across the full Earth diameter under the influence of gravity:

... if the terrestrial globe were perforated through the center, a
cannon ball descending through the hole would have acquired at the
center such an impetus from its speed that it would pass beyond the
center and be driven upward through as much space as it had fallen,
its velocity beyond the center always diminishing with losses equal
to the increments acquired in the descent ...

On a rotating Earth, however, the body will have an initial tangential velocity,
and the nature of its motion in the hypothetical case of "permeable" matter
(which exerts gravitational forces but does not impede motion) is not obvious.
Galileo's pupil, Evangelista Torricelli (1608-1647), conjectured that the path
would be a logarithmic spiral about the Earth's center, described by

r = aekO (3)

in polar coordinates (also known as an "equi-angular" spiral, since the tangent
makes a fixed angle, cot- 1 k, with the radius vector). Isaac Newton re-iterated
this conjecture [2,60] in a letter dated November 28, 1679 to Robert Hooke,
who criticized it during a Royal Society meeting the following December 11.
As we shall see in §4 below, Torricelli and Newton were quite wrong: the path
is actually - as intuitively argued by Hooke - an ellipse.

During his investigations, however, Torricelli discovered a rectification of
the spiral (3) in 1645 through the Archimedean "method of exhaustion" - he
showed that, for -oo < 0 < 0, the arc length equals the length of the tangent
at 0 = 0 extended to the y-axis [9] - namely, -+ k- 2 a (see Figure 1). This
is a truly remarkable result, since the curve must execute an infinite number
of gyrations about the origin before terminating there!
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:P

Fig. 1. The arc length of (3) for 9 < 0 equals the length PQ on the tangent line.

The logarithmic spiral was also known to Thomas Harriot (1560-1621) as
the projection of a rhumb line on the Earth's surface - i.e., the path traced by
a ship that sails in a fixed compass direction - onto the equatorial plane [55].
Jakob Bernoulli was so fascinated by the self-similarity of this curve under
coordinated rotations and dilatations about the origin, that he arranged to
have it engraved on his tombstone with the caption Eadem mutata resurgo [3]
- "Though changed I shall arise the same."

Subsequently, another curve was rectified by Gilles Personne de Roberval
(1602-1675) and Christopher Wren (1632-1723) - namely, the cycloid

x(9) = a(O-sin0), y(O) = a(1-cos0) (4)

traced by a fixed point on a circle of radius a that rolls without slipping on a
straight line (see Figure 2). They showed that a single "arch" (0 < 9 < 27r) of
this curve has length 8a. Although it has now fallen into obscurity, the cycloid
was a virtual "proving ground" for novel mathematical ideas and methods in
the mid-17th century: it caught the attention of all the leading scientists, and
prompted international competitions and acrimonious controversies. See [21]
for a discussion of its tautochrone and brachistochrone properties.

To Descartes, however, the rectification of curves such as the spiral (3) and
the cycloid (4) was suspect - they are not true "geometrical" (i.e., algebraic)
but rather "mechanical" (i.e., transcendental) curves. By introducing angular
variables, their definitions essentially presuppose a rectification (of the circle).
Nonetheless, it was not long before even an algebraic curve, under the scrutiny
of William Neil (1637-1670), Hendrick van Heuraet (1633-1660), and Pierre
de Fermat (1601-1665), succumbed to rectification - the cuspidal cubic

X(6) = 62, y = k6 3  (5)

known as the "semicubical parabola." Its arc length s, measured from • = 0,
is an algebraic function of the parameter:

s() = (9k 20 2 + 4)3/2 - 8

27k
2
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Fig. 2. Cycloid: the length of an arch is eight times the radius of the rolling circle.

Ironically, van Heuraet - an associate of Huygens - published his results in
an appendix to van Schooten's 1659 Latin version of Descartes, Geometria a
Renato Des Cartes. Neil's results also appeared in 1659, in the Tractatus duo,
prior de cycloide, posterior de cissoide published by John Wallis, and Fermat's
work followed in 1660 in De linearum curvarum cum lineis rectis comparatione
dissertatio geometrica- an appendix to a treatise by de Lalouv~re (this was
the only publication by Fermat to appear during his lifetime).

Christiaan Huygens (1629-1695), in his Horologium oscillatorium of 1673,
gave a historical account [34] of these rectifications that provoked arguments
over the priority he attributed to van Heuraet and Wren for their discovery -
see Chapter 8 of [31]. This dispute reflects the philosophical importance of the
rectification problem, which had been held impossible through long tradition
that originated with Aristotle, was reinforced in the 11th century by Ibn Rushd
(Averroes), and culminated in Descartes' dogmatic assertion. Huygens' theory
of evolutes and involutes, employed in his design of an isochronous pendulum
clock [21], offered profound new insight into this age-old problem. The cubic
(5) was recognized as the evolute (locus of centers of curvature) of a parabola,
while the cycloid (4) has an identical (displaced) cycloid as its evolute.

All these results preceded a formal development of the calculus. Whereas
the latter resolved existential issues concerning arc lengths by defining them,
for a (sufficiently smooth) parametric curve (x(ý), y(ý)), through the integral

s(5) = x' 2 ()+ yy'2 () d,, (6)

there remained the awkward fact that this does not admit analytic reduction
except in trivial or exceptional cases, such as the cubic (5).

In fact, with the emergence of differential geometry, it became customary
to assume s - 6 - i.e., the integrand in (6) is precisely unity - although this
natural or arc-length parameterization has only a hypothetical existence: it is
fundamentally incompatible with curves (except straight lines) parameterized
by "simple" functions. This fact is obvious for polynomial curves, but its proof
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for rational curves is subtle [23], involving Pythagorean triples of polynomials,
partial fraction decompositions, and the calculus of residues.

An offshoot to this proof was the introduction of Pythagorean hodograph
(PH) curves, whose hodograph components satisfy the condition

X/2(ý) + y'2 (ý) a26

for some polynomial or(6), and are thus [22] of the form

S= u2(6)_V2(6), y'(6) = 2u(6)v(6), 0,(6) = u2(6)+V2(6)

where u(6), v(6) are relatively prime polynomials. For PH curves, the integral
(6) evidently reduces to a polynomial function of the parameter 6. This fact
proves especially propitious in the formulation of real-time CNC interpolators
for digital motion control applications (see §6 below).

Venturing beyond PH curves, one may seek to encompass a broader class
of loci by allowing more complicated arc-length functions. Suppose we allow
s to be an algebraic function of the parameter • i.e., there exists a bivariate
polynomial F(., .) such that (6) satisfies

f(s(6),C) = 0.

An algebraic function cannot, in general, be described by a simple closed-form
expression. Nevertheless, one can show [53] that (6) is algebraic if and only if
there exists a polynomial h(6) such that

[x,2(6) + y,2 ( )] h(.) - h'2(ý).

As an immediate consequence, if the function (6) is algebraic, it must have the
simple form s(ý) = 2V/() + constant (note that the PH curves are subsumed
as special instances, corresponding to h = 1 [f u2 + v2 d6 ]2). The cubic (5) is

the simplest (non-PH) example of these algebraically-rectifiable curves, with
h(ý) = (9k 2 2 +4) 3/2916k 4 - indeed, it is the unique cubic with this property.
See [53] for details on algebraically-rectifiable quartics and quintics.

Since arc-length parameterization by rational functions is fundamentally
impossible, it seems natural to ask "how close" we can approach this elusive
ideal. Consider, for example, a degree-n polynomial curve r(C): a parameter
transformation C E [ 0,1] -- r E [0, 1 ] of the form

(l -a)T

a(1 -,r) + (1 - a)r

gives a rational representation of the same degree, and offers a single degree of
freedom, a, to control the "parameter flow" over the curve. Using the integral

I = (Ir'(r)l - 1)2 dT (7)
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as a measure of "closeness" to arc-length parameterization (for which I = 0),
the value of a that minimizes (7) can be found [18] as the unique root on (0, 1)
of a quadratic equation; see also [36]. However, this optimal parameterization
offers limited scope for improvement, since we fix the curve degree n.

Another approach, based on the polynomial arc-length functions s(ý) of
PH curves, employs the Legendre series to compute a convergent sequence of
(constrained) polynomial approximations 6l(S), 6 2(s),.... to the inverse of this
function [19], such that

lim ýk(s(')) =- 1 for E [0,1],
k-oo

given the normalization s E [0, 1]. The coefficients of 6k (s) can be determined
through closed-form reduction of certain integrals. For sufficiently high k, the
re-parameterized version rk(s) = r(ýk(s)) comes arbitrarily close to the exact
arc-length parameterization, although it is formally of degree kn.

§4. Curves from Motion I. Centripetal Forces

By integrating the description of the forces and laws of motion that govern a
physical system, the science of dynamics provides a rigorous and quantitative
approach to analyzing motions. Perhaps more so than in any other branch of
science [12], the theoretical canonization and empirical triumph of dynamics
are the fruits of a single pre-eminent mind: Sir Isaac Newton.

Perhaps the simplest (non-trivial) problem of dynamics is that of motion
under a centripetal force - i.e., a force always directed toward or away from
a fixed center, whose magnitude depends only on distance r from that center.
The term centripetal-- "seeking the center" - was introduced [60] by Newton
in his De motu corporum in gyrum of 1684 (in recognition of the fact that, to
overcome the inertial tendency of a body to move in a straight line, circular
motion requires a steady force directed toward a fixed center):

I call that, by which a body is impelled or attracted toward some
point which is regarded as a center, centripetal force.

The basic questions concerning centripetal forces are: what kinds of orbit arise
from different dependencies of the force on r - and, conversely, knowing the
type of orbit, can we deduce the dependence of the force on r?

In the late 17th century the context for interest in such questions was, of
course, the search for an explanation of Kepler's (empirical) laws of planetary
motion - namely: (i) the orbits of the planets are ellipses, with the sun at one
focus; (ii) the radial line between the sun and a planet sweeps out area at a
uniform rate; and (iii) the squares of the orbital periods are proportional to the
cubes of the mean distances of planets from the sun. As we now know, these
are direct consequences of an inverse-square (r- 2 ) gravitational force. Newton
discovered this at an early stage in his career, but remained characteristically
secretive about it. It is Edmond Halley who deserves credit for coaxing Newton
into disseminating his arguments and, ultimately, codifying dynamics through
publication of the Principia. According [13] to Abraham de Moivre:



Curves from Motion 71

In 1684 D' Halley came to visit him at Cambridge, after they
had been some time together the Dr asked him what he thought the
Curve would be that would be described by the Planets supposing
the force of attraction towards the Sun to be reciprocal to the square
of their distance from it. Sr Isaac replied immediately it would be
an Ellipsis, the D' struck with joy & amazement asked him how he
knew it, why saith he, I have calculated it, whereupon D' Halley
asked him for his calculation without any further delay, Sr Isaac
looked among his papers but could not find it, but he promised to
renew it, & then send it him ...

In fact Halley, as Clerk to the Royal Society, printed the Principia at his own
expense; the Society's funds had been depleted by the production of a Historia
Piscium (History of Fishes) that failed to become a best-seller. Subsequently,
Halley's salary was paid entirely in copies of this Historia Piscium [13].

The inverse-square nature of gravitational force, now common knowledge,
was established by Newton as the rational explanation for Kepler's laws. It is
not widely known, however, that the Principia thoroughly analyzes a variety of
power-law (rn) centripetal forces, and shows that different integer exponents
n yield circular, conic, spiral, and other orbits in an often surprising manner.
The profundity of these results - and their anticipation of an elegant theory of
dual centripetal forces due to K. Bohlin [7] and E. Kasner [38] - has recently
been emphasized by Arnol'd [2], Chandrasekhar [10], and Needham [45].

As reflected in the title of Chandrasekhar's recent book [10], the obscurity
of such interesting results in the Principia is due to Newton's exclusive reliance
on forbiddingly Euclidean argumentations. The modern reader, equipped with
predominantly analytic/algebraic skills, is usually reduced to a state of dismay
and bewilderment upon a first encounter with the Principia. Needham [45]
argues convincingly that the re-discovery of Newton's "geometrical calculus"
is a very rewarding endeavor, and Arnol'd [2] gives an example of the type of
problem - the transcendental nature of certain area integrals - that seems
"obvious" to Newtonian thinking, but not to modern modes of thought.

To elucidate connections between the Principia's results and the Bohlin-
Kasner theory of dual centripetal forces, it is convenient [2,44] to adopt the
complex-number representation z = x + i y = r ei° of the Euclidean plane.
Under a centripetal force proportional to the n-th power of distance Lfrom
the origin, the equation of motion is then

d2z z

dt 2  Z . (8)
Here, the centripetal force is attractive or repulsive according to whether k is
positive or negative. Hooke's law, for example, corresponds to n = +1, while
n = -2 represents a Coulomb (gravitational or electrostatic) force.

There are two "constants of motion" associated with solutions z(t) to the
differential equation (8) - the angular momentum and energy,

L=Im( dz 2 dO and E 1 dz 2 +kIZ+ . (9)
L jI t J dt 2 dt n+ 1
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Fig. 3. Constancy of angular momentum L under an r-2 centripetal force.

Although we may formally replace lzlnl/(n + 1) by In Izi when n = -1, this
case is usually excluded. For n < -2, the "potential energy" component of E
is naturally negative, and tends to zero as Izi -- no. Conversely, for n > 0, the
potential energy is naturally positive and vanishes when Izi = 0. The function
In Iz1, however, diverges for both IzI -+ 0 and IzI -* oo; it does not represent
a satisfactory scale-free potential energy with a natural reference value.

The polar form of L given in (9) serves as a reminder of its geometrical
interpretation, namely, the rate at which the position vector sweeps out area in
the orbit - this constancy of "areal velocity" is expressed by Kepler's second
law. Section II of Book I of the Principia is devoted to "the determination of
centripetal forces," and Newton's immediate concern [46] is to prove:

PROPOSITION I. THEOREM I

The areas which revolving bodies describe by radii drawn to an immovable
centre of force do lie in the same immovable plane, and are proportional to
the times in which they are described.

PROPOSITION II. THEOREM II

Every body that moves in any curved line described in a plane, and by a
radius drawn to a point either immovable, or moving forwards with an uniform
rectilinear motion, describes about that point areas proportional to the times,
is urged by a centripetal force directed to that point.

In other words, Newton first shows that "centripetal force - L = constant"
(this principle is illustrated in Figure 3, for the case of a Coulomb r-2 force).

Consider now the conformal map z --+ w of the plane given by

W = z0', (10)

under which the orbit z(t) determined by equation (8) is transformed into an
orbit w(,r), where t and r- denote times on these orbits corresponding to an
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angular position 6 about the origins of the z and w planes. Writing z = r eiO

and w = peiO, we stipulate that these orbits have equal angular momentum

2 dO 2 dO
= r- = P - = constant, (11)

and we ask: is the orbit w(T) also the solution to an equation of motion

d - - WI 'm  - (12)

dT2  IWI

under a power-law centripetal force - and if so, how are the exponents n, m,
a related? It transpires that this problem has an elegant and unique solution:
corresponding force-law exponents n and m are related by

(n + 3)(m + 3) = 4, (13)

and the exponent a of the map (10) is given in terms of them by

n+3 2 2
2 m+3 (14)

To derive equations (12)-(14), we first note from (10) and (11) that derivatives
with respect to t and r are related by

d t2(1_)d (15)

Now by applying (15) to w z za twice, and invoking (8), we obtain

d 2W [= 1dz ý2 IzIn 1 ]z w2-3a ZYO- =T2 2a(1-Ia) at + k 2(a- 1)1 zaI

We observe that by choosing 2(a - 1) = n + 1, i.e., a = (n + 3)/2 as in (14),
the expression in brackets coincides with the energy constant E in (9). With
this choice, substitution from (10) gives

d2w 2a(a- 1) E IwI(2-3,)/a Wi-*I/3

This is of the desired form (12), with K = 2a(a-1)E and m = (2-3a)/a, i.e.,
a = 2/(m + 3) as in (14). Finally, equation (13) follows from the individual
relations in (14), between n and a, and m and a, derived above.

Equation (13) describes a hyperbolic relation between the force exponents
n and m. For each n, except -3, the orbit z(t) determined by (8) is mapped
by (10) into a dual orbit Wt(T) of equal angular momentum, determined by (12).
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Dual orbits corresponding to integer force exponents are of special interest -

they are (with n > m) as follows:

(a) n--+1, m=-2, z-z 2 ,

(b) n =-1, m= -1, z -z,

(c) n =-4, m =-7, z z-112,

(d) n=-5, m=-5, z z-'z .

Cases (b) and (d) identify "self-dual" forces (as noted above, however, case (b)
is usually excluded on physical grounds). Case (a) reveals the beautiful result
that an orbit z(t) under a linear Hooke's-law force is mapped by w = z 2 to
an orbit w(r-) under an inverse-square Coulomb force. Indeed, Newton shows
that the Hooke and Coulomb forms are the only centripetal forces that admit
conic orbits. In this regard, see [44] for an interesting anecdote concerning the
£1 note issued to commemorate the Principia's 300th anniversary.

To investigate the geometry of orbits under power-law centripetal forces,
it is convenient to employ polar coordinates (r, 0). Using the fact that r29 = L,
we can write the scalar components of the equation of motion (8) as

F - L
2
r-3 + krn = 0 and 2÷/6 + r9 = 0, (16)

where dots denote time derivatives. To eliminate the time variable, and obtain
a purely geometrical description of the orbit, we set u = 1/r and note that

d .d 2d
- 9- = Lu

With 3 = =k/L 2, the first of equations (16) can then be transformed [10,57] to

u" + U - /3u-(n+2) = 0, (17)

where primes denote derivatives with respect to 9. By solving this differential
equation, we obtain polar-coordinate expressions r(9) = 1/u(9) describing the
shapes of orbits. One may verify the functional form and geometrical nature
of some representative solutions known to Newton:

n = +1 : r(9) = (/3 sin 2 9 + cos2 
9)-1/2 ellipse, center at origin;

n = -2: r(9) = (3 + cos9)-1 ellipse, focus at origin;

n = -3: r(9) = exp ( v/-- 1 9) logarithmic spiral;

n = -5: r(9) = v/--/2 cosO circle through origin.

The cases n = 1 and -3 are treated in PROPOSITION X. PROBLEM
V and PROPOSITION IX. PROBLEM IV of the Principia, Book I. The case
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n = -5 is pathological, since the orbit passes through the center of force! In
PROPOSITION V. PROBLEM II, Newton actually treats a generalization of
the n = -5 case - he shows that a particle p will execute a circular orbit if
it is attracted to any center c by a force proportional to r- 2 t-3, where r is
the distance of p from c, and f is the length of the chord containing p and c.
When c lies on the circle, we have f = r, and hence an r- 5 force.

In Section III of Book I, Newton is concerned with "the motion of bodies
in eccentric conic sections." He treats the case n = -2 in PROPOSITION XI.
PROBLEM VI, and also discusses parabolic and hyperbolic orbits. Kepler's
third law is also derived, in PROPOSITION XV. THEOREM VII.

Incidentally, the case n = 1 provides the correct solution to the problem
of motion in the gravity of a permeable rotating Earth, considered by Torricelli
(see §3). If the Earth is a homogeneous sphere of mass M and radius R, the
gravitational force at distance r from the center is equal to

GM(r/R)
3

r2

G being the gravitational constant - i.e., it is proportional to r. Thus, the
path is an ellipse, and not the logarithmic spiral suggested by Torricelli (which
requires an r- 3 force). Actually, it is a very shallow ellipse - the minor axis is
smaller than the major axis R by the dimensionless factor V/GM/w 2R 3 ; 291,
where w = 27r rads/day (this factor is the ratio of the orbital velocity at r R R
to the tangential velocity wR at the equator due to the Earth's rotation).

A shallow ellipse is an obvious perturbation to Galileo's simple harmonic
motion through a non-rotating permeable Earth, and in retrospect Torricelli's
conjectured spiral trajectory - revived by Newton in 1679 - may seem rather
naive. Newton soon redeemed himself, however, through the publication of his
Principia in 1686, which contains the correct solution as part of a remarkably
comprehensive theory of orbital motions under centripetal forces.

It is a sobering experience, for the modern reader, to pierce the Principia's
veil of geometrical argumentations, and appreciate its profound insights. To
contemporaries, Newton's creation was a virtually miraculous event - Halley
composed an ode to preface the Principia, extolling "the illustrious man" and
his work, "a signal distinction of our time and race" [46]:

Matters that vexed the minds of ancient seers,
And for our learned doctors often led
To loud and vain contention, now are seen
In reason's light, the clouds of ignorance
Dispelled at last by science ...

However, Newton was not exempt from the sarcasm of critics, such as the poet
Alexander Pope [51], who were often more eloquent in their converse views:

Superior beings, when of late they saw
A mortal man unfold all Nature's law,
Admired such wisdom in an Earthly shape,
And showed a NEWTON as we show an ape.
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r-5 force r-2 force

Fig. 4. Geometry of zero-energy orbits under r- 5 and r- 2 centripetal forces.

To conclude, we note that the singular orbit r(O) = V3-/2 cos 0, identified
above for an r- 5 force, corresponds to the case where the orbital energy

÷2  L 2  k
E 2 • + 2r2 4r4

is zero: it is the analog of zero-energy parabolic orbits under an r- 2 force (see
Figure 4). As r -- 0 (t --+ rk/8L3 ), the positive kinetic energy and negative
potential energy both become infinite in a manner such as to maintain E = 0.
The angular momentum L is also conserved, in a limiting sense, as r -+ 0.

For orbits with E / 0, equation (17) can be integrated to obtain

Vfl-1/r du 0
T du

v Vs /o fU4 - 2U2 +y

where -y = E/L 2 and r = r0 for 0 = 0. A further reduction, giving r explicitly
in terms of 9, is possible upon introducing Jacobian elliptic functions [41], but
we shall not pursue it here. A special case is a circular orbit u = uo = 1/ro, of
energy E = 4(2L

2 - ku2)u2, but this is highly unstable - any perturbation
will cause r to rapidly decay to 0 or grow to oo (see Figure 5, comparing orbits
under r- 5 and r- 2 forces perturbed by introducing an initial negative/positive
radial velocity corresponding to a 10-3 fractional change in E).

" ... ...................... . . -

r-5 force r-2 force

Fig. 5. Relative stability of circular orbits under r- 5 and r- 2 centripetal forces.
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Fig. 6. Geometrical dimensions of a planar four-bar linkage.

In fact, only the n = +1 and -2 force laws admit stable periodic orbits,
in the sense that perturbations to them always produce similar, "neighboring"
closed orbits (a proof is given in Appendix A of Goldstein [28]).

§5. Curves from Motion II. Four-bar Linkage

A mechanism is a device that is designed to transform "input" motions and
forces, from a given power source, into "output" motions and forces - better
suited for use in some practical application. A mechanism typically comprises
several rigid members connected by joints that allow certain types of relative
motion. According to the Kempe theorem [39], mechanisms that employ only
revolute and prismatic joints can (in principle) be designed to produce motion
along any plane algebraic curve. We consider here the coupler curves of planar
four-bar linkages, which serve to transform a rotational input motion into an
output motion along some general curved trajectory.

(In early studies, such mechanisms were called three-bar linkages, since
the "ground" link was not counted. It is now customary to include it, to give
a closed kinematic chain. The idea of kinematic chains was introduced by the
German engineer Franz Reuleaux, in his Theoretische Kinematik of 1875).

Figure 6 shows the geometrical configuration of a four-bar linkage. Such
mechanisms are found in diverse contexts (windshield wipers, electric shavers,
cranes, etc.). Historically, the most famous example was the "parallel motion"
mechanism devised by James Watt (1736-1819) for his double-acting steam
engine of 1782. In Figure 6, the link of length k is held fixed, while links of
length r and R pivot about its two endpoints. These links are connected by
a further link of length c, whose ends are thus constrained to lie on circles of
radii r and R centered on (0, 0) and (k, 0). A point at a fixed position relative
to the link of length c thus traces a locus, called the coupler curve, when the
links of length r and R rotate (see Figure 7). We identify a specific point p
by taking it to be the apex of a triangle of sides a and b, with base c.
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........ ..

Fig. 7. Generation of a coupler curve by a four-bar linkage.

According to the Grashof theorem [29], the sum of lengths of the shortest
and longest links should not exceed the sum of lengths of the other two links,
if there is to be continuous relative rotation between two links. This condition
is satisfied by the configuration shown in Figure 6, a crank-rocker mechanism:
the link of length r (the crank) completes full revolutions, while that of length
R (the rocker) oscillates through partial revolutions; the link of length c is the
coupler. Other possible mechanisms - the double-crank or double-rocker -
are obtained by varying the lengths k, r, R, and c of the links.

Four-bar linkages are capable of generating a rich variety of curved paths:
the Hrones-Nelson "atlas" [32], for example, illustrates over seven thousand
different forms of the coupler curve! These paths are all (parts of) an algebraic
curve of degree 6, that depends on six parameters - the dimensions k, r, R,
a, b, and c. Its equation can be succinctly expressed [4] in the form

f(x,y) = u2(x,y) + v2 (x,y) - w2(x,y) = 0 (18)

where
u(x,y) = a[ (x- k) cos, -+ ysiny] (x 2 +y 2 +b 2 -r 2 )

- bx[(x - k) 2 + y2 +a 2 -R2],

v(x,y) = a[ (x- k)sin-y- ycos-,] (x 2 + y 2 + b2 - r 2 ) (19)

+ by[(x-k)2 +y 2 +a 2 _R2],

w(x, y) = 2ab [x(x - k) sin-y + y 2 sin - - ky cos -y],

and we have introduced the angle y = cos- 1 (a 2 + b2 
- c2 )/2ab in lieu of c. The

curve defined by (18) and (19) has an ordinary triple point at each of the two
circular points at infinity, and three affine double points (two of which may
be complex conjugates) that always lie [4] on the circle

X2 - kx + y2 - kycot'y = 0, (20)
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Fig. 8. Coupler curves for various values of the parameters k, r, R, a, b, c.

illustrated in the example in Figure 9 below. The coupler curve falls one short
of the maximum of 10 double points that an algebraic curve of degree 6 may
have, and is therefore of genus 1 - i.e., it is an elliptic curve.

For a crank-rocker, the curve defined by (18) and (19) always comprises
two real loops. The physical mechanism traces just one of them: to trace the
other loop, the initial configuration of the linkage must be changed. Further
examples of crank-rocker coupler curves are shown in Figure 8. For double-
crank and double-rocker mechanisms, the coupler curve also has two loops, but
in the latter case the mechanism cannot trace either loop entirely. Four-bar
linkages that do not satisfy the Grashof condition exhibit single-loop coupler
curves, which may self-intersect (as in the Figure 9 example - note that the
mechanism cannot trace the entire curve). Equations (18) and (19) encompass
all these forms for suitable choices of k, r, R, a, b, and c.

Fig. 9. Single-loop coupler curve for a non-Grashof mechanism.
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Fig. 10. Peaucellier mechanism: circular motion of P yields linear motion of P'.

A remarkable property of four-bar linkage coupler curves is expressed by
the Roberts-Chebyshev theorem [50] - a given coupler curve may actually be
traced by three different four-bar mechanisms (which are said to be cognates
with respect to the given curve). This is not merely a mathematical curiosity:
once a path is realized through a specific mechanism, one of its cognates may
be found to produce better force transmission characteristics.

The design of a mechanism for a given path may be based on consultation
of an "atlas" of coupler curves [32], or use of numerical methods to find the
linkage dimensions that will give a locus interpolating prescribed points [6,58].
Allowing for freedoms in the choice of coordinate system, the general coupler
curve defined by (18) and (19) can be made to interpolate nine points, but
determining the mechanism parameters involves solving a formidable system of
non-linear algebraic equations. Wampler et al. [58] have shown, for example,
that (counting cognates) the nine-point problem has 4326 solutions, many of
which may correspond to complex values for the link dimensions, or interpolate
the discrete points on incompatible portions of the coupler curve.

As previously noted, one of the first applications of four-bar linkages was
to transform the reciprocating linear motion of a piston into rotary motion of a
shaft. Watt, Chebyshev, Roberts, and others proposed approximate solutions
to this problem, but linkages that offer exact transformations between linear
and circular motion were not known until 1864, when a captain in the French
army, A. Peaucellier, devised the mechanism shown in Figure 10, comprising
four links of length a and two of length b (> a). If the point P is constrained
to move on a circle passing through the pivot 0, the point P' traces a straight
line, such that 0, P, P' always remain collinear, and the distances r and r'
of P and P' from 0 satisfy rr' = b2 - a2 . Thus, P and P' are images of each
other under inversion in the circle with center 0 and radius •b 2

- a 2.

Further details on the geometrical and kinematical properties of coupler
curves may be found in standard texts [4,16,30,33] on kinematics - see also
[47] for an interesting history of coupler curve synthesis methods.
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§6. Motion from Curves I. Multi-axis CNC Machines

We have described above how interesting curves can arise from motions under
specified kinematical or dynamical constraints. Computer numerical control
(CNC) technology is concerned with the converse problem - i.e., the physical
realization (by cutting tools, robot arms, sensors, etc.) of motions specified
by geometrical paths and given speeds or feedrates along these paths.

To produce a desired motion, a CNC machine must drive each of its axes
in an independent but coordinated manner. The controller algorithm employs
digital representations of space and time: the unit of time, or sampling interval
(typically - 1 millisecond), is defined by a "clock" within the algorithm, while
the basic length unit (BLU, typically -. 10 microns), or spatial resolution of
the machine, is determined by position encoders mounted on its axes.

Within each sampling interval At, the controller must compare the actual
position of each axis (as measured by the encoders) with the intended position
(computed from the specified paths and feedrates by a real-time interpolator).
The discrepancy between the actual and desired positions is used to generate
control signals for the machine drives, ensuring that the specified paths/speeds
are accurately realized. The discrete positions on a curved path r(6) computed
by the interpolator are known as reference points - they are identified by the
sequence CO, 6i, 62,... of parameter values satisfying $0 = 0 and

S-a = At for k = 1,2,... , (21)

where a(•) - Ir'(ý)I is the parametric speed of the curve and V is the (constant
or variable) feedrate. Since the integral does not ordinarily have a closed-form
reduction, and the unknowns are limits of integration, equation (21) is difficult
to solve accurately and efficiently - even if V is constant.

Because of this computational difficulty, it is customary to employ simple
(piecewise-linear/circular) "G code" approximations to curved tool paths [1].
Compared to its electromechanical hardware sophistication, the part program
data that drives a CNC machine is embarrassingly crude. Some authors [11,61]
have proposed to drive CNC machines along general curved paths by invoking
approximate solutions to (21), based on the Taylor-series expansion

V V /1r'r
4k-1 + At + v- 2 V)Y (' .+ (22)

where primes indicate derivatives with respect to the curve parameter ý, and
it is understood that or, r', r", V, V', etc., are evaluated at G-1.

The extension of (22) to cubic and higher-order terms incurs complicated
coefficients, and is thus ill-suited to real-time computation. Truncation errors
are inevitable with this approach (most implementations, in fact, retain only
the linear term). Note also that, for a non-constant feedrate, the variation of
V cannot be usefully specified as a function of 6. It must be given in terms of
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Fig. 11. Curvature dependent feedrate (24) for a constant material removal rate.

a physically meaningful variable, such as time t, arc length s, or curvature r,
- in terms these variables, the derivative of V in (22) may be written as

a dV dV dn dV
V dt - ds ds dr,

The Pythagorean-hodograph curves offer an elegant and rigorous solution
to this dilemma [24]. For PH curves, the integral (21) admits a simple analytic
reduction - not only for constant feedrate, but also varying feedrates specified
in a number of useful ways, such as:

(a) any function V(t) of time with known indefinite integral;
(b) a linear or quadratic polynomial V(s) in the arc length;
(c) simple rational expressions V(K) in the local curvature;
(d) constant feedrate V along an offset to a specified curve.

In (almost) all these cases, the interpolation equation (21) reduces to the form

s(,Wk) = F(...,Gk-0), (23)

where s(ý) is the polynomial arc-length function of the PH curve, and F is a
known elementary function of the parameters describing the feedrate variation
and the preceding reference point Ck-l. Since s(C) is a monotone polynomial,
equation (23) has a unique real root for the value of Gk, which may be obtained
to machine precision by a few Newton-Raphson iterations starting from ck-1.

The ability to perform real-time interpolation with continuously varying
feedrates is extremely useful in a variety of practical problems. For example,
the curvature-dependent feedrate

S- v0
V5) =(24)1 + K(d - 1)
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Fig. 12. Measured feedrate (left) and cutting force (right) using the function (24).

can suppress machining force variations [20] when a fixed depth of cut 6 is to
be removed along a curved path r(ý) with a tool of radius d (see Figure 11: the
material removal rate is higher at the "concave" location b than the "convex"
location c if a constant feedrate Vo is employed). Figure 12 shows the measured
feedrate and (time-averaged) cutting force, as obtained from an experimental
implementation of the PH curve interpolator for (24) on a CNC mill.

An important use of time-dependent feedrates V(t) is the specification of
smooth accelerations and decelerations along curved paths. This is especially
important for high-speed machining, in which the dynamical issues of starting
and stopping high-speed motions on curved paths become a serious concern.
With G code part programs, for example, acceleration/deceleration intervals
may span many short linear/circular segments, and thus require a cumbersome
real-time block "look ahead" capability for their implementation.

Using PH curves, on the other hand, it is easy to specify a smooth feed
acceleration from feedrate V = 0 for t < 0 up to a desired constant feedrate
Vm for t > T along a curve r(ý). If r = t/T is the "normalized" time during
the acceleration interval t E [0, T], we use the polynomial feedrate function

n

V(T) = k (1 -])nkTk (25)
k=0

of odd degree n, with Vo ..... V(.-l)/ 2 = 0 and V(n+l)/2 . Vn = Vm.

This gives C(n- 1 )/ 2 continuity with V = 0 for t < 0 and V = Vm for t > T -
in particular, n = 3 and n = 5 yield C' and C 2 feedrate variations.

The interpolation equation for such time-dependent feedrate functions
on PH curves is remarkably simple - it is precisely of the form (23), with the
right-hand side being simply the integral F(r) of (25), a polynomial of degree
n + 1. Only the right-hand side "constant" changes on using higher degrees n,
and the incremental cost of evaluating this constant, in each sampling interval
At, is insignificant for any "reasonable" choice of the degree n.

There are many other possibilites for specifying and optimizing feedrates
along PH curves. For example, curved paths are realized on CNC machines by
coordinated motions of independently-powered axes, and the chosen feedrates
and feed accelerations should not impose demands on the motors of each axis
that exceed their torque or power capacity. For PH curves, a thorough analysis
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of this problem is possible [25], allowing an a priori determination of safe fixed
feedrates and minimum feed acceleration intervals for a given path geometry.

§7. Motion from Curves II. Quaternion Methods

We have only been concerned, thus far, with the motion of points in Euclidean
spaces. The problems of motion in non-Euclidean spaces, or motion of bodies
of finite extent (involving changes of position and orientation), are much more
challenging - they arise frequently in animation, robotics, 5-axis machining,
dynamics, and many other applications. Thus, to conclude, we briefly consider
some basic problems in the use of quaternions [5,8,52] to formulate spatial rigid
body motions as time-parameterized loci in non-Euclidean spaces.

This subject has seen intense interest [17,27,35,37,40,48,54,59] - see also
the extensive bibliography in [52] - in recent years, and substantial progress in
"motion design" has been made. Nevertheless, the fundamental problems we
encounter with purely translational (point) motion carry over to and, indeed,
become much deeper in the context of general spatial motions.

The revival of quaternions in motion-design applications helps remedy a
steady historical decline of interest in them. The introduction of quaternions
by Sir William Hamilton (1805-1865) predates (and subsumes) development
of the "ordinary" vector analysis in R 3 by James Clerk Maxwell (1831-1879),
Josiah Willard Gibbs (1839-1903), and Oliver Heaviside (1850-1925), who -
along with later generations of physicists - considered quaternions to be an
unduly cumbersome medium for describing the laws of nature [14].

A general displacement in Euclidean 3-space R 3 can be interpreted as a
screw displacement - i.e., a rotation about a fixed axis and a translation along
that axis [8]. Six parameters are required to describe such displacements. Let
P = (X, Y, Z)T and p = (x, y, Z)T be point coordinates in a "fixed" frame E
and a "movable" frame a. The spatial displacement carrying E into a may
be described by an orthogonal rotation matrix M and a translation vector d:

P = Mp + d.

The rotation matrix can be expressed in terms of Euler parameters

co = cos 10, cl = A sin ¢, c 2  /sin €, c3 = v sin!,

where (A,/p, v) are direction cosines of the axis and 0 is the rotation angle, as

0c + c1 - c2 - c3  2(clC2 - coc3) 2(clc3 + cOc2)
2(c2cl + coc3) Cc2 c 2 + cc - cC2 - co + •

2 2 2 2 2
2(c3cl - coc2) 2(c3c 2 + COCl) - c -2c2 + cod)

Note that, since the Euler parameters satisfy the normalization condition

S+ 2+ 2 2 = 1, (26)
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only three are independent. In lieu of the translation vector d = (di, d2 , d3),
Study [56] introduced four new parameters:

c' = (cidi + c2 d2 + c3d 3)/2,

c' = (-cod - cd 2 + c 2 d3)/2,

2 = (CAdi - cod 2 - cid3)/2,

C' = (-c 2di + c1d2 - cod3)/2,

which, by definition, satisfy the constraint

c0c + cIc4 + c2C2 + c3C4 = 0. (27)

The set of all displacements in 1R3 can then be regarded as points, or soma, in
a 6-dimensional space spanned by eight coordinates (Co, c, r2, c3, c3, c1, C2, C' )
subject to the two algebraic constraints (26) and (27).

A compact and elegant algebraic description of these soma is obtained [8]
by combining the eight coordinates into a dual quaternion of the form

C = co + ec• + i(cl + Ec') + j (c 2 + Ec2) + k (c3 + Ec3). (28)

Here, the quaternion basis elements satisfy the multiplication rules

ij = k, jk = i, ki = j, i2 =j 2 =k 2 =-1

(so that multiplication is non-commutative: j i = - i j, etc). The components
of the quaternion (28) are "dual numbers" of the form x + E x' for real x, x'
- the dual basis element e satisfies e2 = 0 (# E). The relations (26), (27) and
62 = 0 ensure that (28) is a unit dual quaternion: its components satisfy

(co+eca)+ + _C+ )2 + (c + CC,) 2 + (ca_+Cc) 2 = 1.

For a spatial displacement specified by the unit dual quaternion (28), we can
extract the geometrical parameters as follows:

d = 2(cc -coc'-cxc'), € = 2cos-'co, (A)pv) - nsin ½€1O'

where c = (cl,c 2 ,c 3), c' (c4,c2,c3), 0 < cos- 1 cO < 7r, and x is the familiar
vector cross product in JR 3 . Note also that the translation distance is

d = Idl = 2 c/2 + c1 -+ c/2 "+c/

When c' = c' = c2 = c= 0 the dual quaternion (28) specifies a pure rotation
(the non-commutativity of quaternion multiplication reflects the importance
of the order in which spatial rotations are executed - see Figure 13).



86 R. T. Farouki

Z z

Y :

Fig. 13. Effect of rotations Rx(cs)Rz(fl) and Rz(3)R(c(a) applied to a vector v.

The principal advantage of the form (28) is that the outcome of successive
displacements, A followed by B, corresponds to the ordered product C = BA
of their dual quaternion representations. With

A = ao + Ea• + i(a, + Ea') + j (a 2 + Ea2) + k (a 3 + ea3),
bo= +bEb + i(bl + -b') + j (b2 +rb ) + k(b 3 +-b),

the elements of C are homogeneous quadratic forms in those of A and B:

co = aobo - albi - a 2b2 - a3b3,

C, = albo + aobl + a 3b2 - a2b3,

C2 = a 2 bo + aob2 + alb3 - a 3b, ,

C3 = a 3bo + aob3 + a 2b, - alb2,

co= aob0, + aob o - alb' - a'bl - a 2b' - a'b2 - a 3b' - ab
1 1 2 2 2 ab3 3 ab3,

= alb0 + a'bo + aobl + aob1 + a3b + a3b2 - 3 3

c2 = a 2b0 + a2bo + aob2 + a'ob 2 + alb' + a'b 3 - a 3 bl - a/3b1 ,

c' = a 3bo + a'bo + a0 b3 + a~b3 + a 2b1 + a2b, - alb2 - alb 2 .

Now a general rigid body motion, involving both translation and rotation,
corresponds to a locus of points in soma space, where a value of the time t is
associated with each point. It is tempting to invoke a unit dual quaternion
C(t) parameterized explicitly by "simple" - i.e., (piecewise) polynomial or
rational - functions of time, and most motion design schemes rely upon this
model. Typically, a sequence C1,... ,CN of displacements at times t1, ... ,tN
are specified, and one seeks a "smooth" motion interpolating them.

In §2 we emphasized that motion specification is as much concerned with
velocities and accelerations - determined by the precise nature of the time
parameterization - as with the path geometry, and this precept also holds for
spatial rigid body motions. An ad hoc or "indirect" time parameterization of a
quaternion locus C(t) can incur linear/angular velocities or accelerations that
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are undesirable or, at least, only determinable a posteriori - after the motion
has been specified, rather than being an integral part of its specification.

For rational point motion, the difficulty in simultaneously specifying both
path geometry and speed along the path arises from the fact that curves do
not, in general, admit rational arc length representations. As indicated in §6,
the use of special (PH) curves can resolve this problem. For rational rigid body
motions, however, the difficulty is not just one of computation, but also the
more fundamental issue of how we characterize "distance travelled" in terms of
both the translational and orientational components. Should they be treated
together, or separately? In other words, can we introduce a suitable metric for
soma space that allows us to define "arc length" along a unit dual quaternion
locus C(t), and thus formulate methods to specify both positions/orientations
and linear/angular speeds for rational spatial motions?

Ravani and Roth [49] have proposed, by analogy with elliptic geometry, a
metric that yields a dual number value for distances in soma space. However,
the use of this metric in motion design, or of alternate (real-valued) functions
that exhibit the usual properties of metrics, remains to be explored.

§8. Closure

With its opening AXIOMS, or LAWS OF MOTION, the Principia establishes
uniform motion as the natural state of a free body. The forces that act upon
bodies incur deviations from uniform motion, in a deterministic though subtle
manner that reveals appealing and useful connections between geometry and
kinematics. Although, in this rather brief and eclectic survey, we have offered
only a few illustrative anecdotes on this theme, we hope they have stirred the
interest of some inquisitive readers, and have thus helped to promote further
theoretical developments and practical applications.
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