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Non-Stationary Subdivision for Inhomogeneous

Order Differential Equations

Joe Warren and Henrik Weimer

Abstract. This paper provides a methodology for the systematic deriva-
tion of subdivision schemes that model solutions to inhomogeneous order
linear differential equations. In previous work, we showed that subdivi-
sion can be used to capture very efficiently the solutions of homogeneous
order, linear differential equations. The resulting subdivision masks are
stationary and can be precomputed, allowing for very simple and fast ap-
plication of these schemes. In this paper, we show that this method can
be extended to express solutions of systems of inhomogeneous order, lin-
ear differential equations. Even though the resulting subdivision masks
may be non-stationary, the masks can again be precomputed. Thus, the
resulting subdivision schemes capture very efficiently solutions of inhomo-
geneous order, linear partial differential equations.

§1. Subdivision for the Modeling of Shapes

Subdivision is a popular and efficient method for modeling shapes. In par-
ticular, subdivision describes a continuous shape p as the limit of a sequence

Pk, k > 0 of discrete shapes,

lim Pk = P.
k-- oo

The beauty of subdivision lies in the fact that these discrete shapes Pk
are linked by a simple linear transformation S which is based on splitting and

averaging,
Pk = Sk-lPk-1.

Figure 1 shows an example of a subdivision scheme. Starting from the
coarse shape po on the left, application of the subdivision matrix So yields the

denser shape Pl. As we continue the process, the sequence of discrete shapes
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P0 Pi P2

Fig. 1. Subdivision models a shape as the limit of a sequence of discrete shapes.

converges rapidly to a continuous shape p that follows the original coarsest
shape P0 and whose properties are determined by the subdivision matrix.

Subdivision's popularity for the modeling of curves is due to the algo-
rithms by Chaikin [9], and Lane and Riesenfeld [6]. The breakthrough for the
modeling of surfaces via subdivision was marked by the papers by Catmull
and Clark [2] and by Doo and Sabin [3]. A popular subdivision scheme for
modeling with triangular meshes has been proposed by Loop [7], which was
also used for creating Figure 1.

§2. Shape Modeling through Differential Equations

Alternatively, shapes can be characterized as solutions to partial differential
equations. For example, any polynomial spline p[x] of degree m satisfies the
differential equation p(m+l)[x] = 0, requiring the (m + 1)st derivative of the
spline to be zero everywhere except at a fixed number of knots [1]. Other ex-
amples of shapes based on partial differential equations are the polyharmonic
surfaces, including Thin Plate Splines, as well as many different classes of fluid
flows.

When modeling with differential equations, we determine a continuous
shape p that is a solution to a set of partial differential equations

D p = b, (1)

where D denotes a continuous differential operator and b encodes the bound-
ary conditions for the problem. For the example of natural cubic splines, we
have D = 84 and b = 0 almost everywhere. If all differential operators in
D are of the same, fixed order, we call the differential equation homogeneous
order. Otherwise, the equation is called inhomogeneous order.

To handle such problems in a computational environment, one commonly
discretizes the continuous problem. To this end, a domain grid Tk is chosen
and all entities of the continuous partial differential equation (1) are discretized
over this domain grid. The result is a system of linear equations

Dkpk = bk, (2)



Non-Stationary Subdivision for Inhomogeneous Order PDE's 413

where Pk denotes an approximation of the continuous solution p over the grid
Tk, bk denotes a discretization of the boundary conditions, and Dk is a discrete
approximation of the continuous differential operators D on the domain grid
Tk.

Relying on the theory for finite elements or finite differences [11], the
discrete solutions Pk can be formally guaranteed to converge to the continuous
solution p of the original continuous problem (1) if the discretizations Tk are
chosen carefully and the discrete representations Dk and bk are well chosen.

At this point, the problem of finding the continuous solution p of the
system of continuous partial differential equations (1) has been reduced to the
problem of solving denser an denser systems of linear equations (2).

The links between mesh modeling and differential equations were previ-
ously investigated by Mallet [8], Taubin [12], and Kobbelt [5]. The method
presented here is new because subdivision schemes that model solutions of in-
homogeneous order differential equations are precomputed entirely, enabling
very efficient modeling of shapes guided by inhomogeneous order differential
equations. In particular, the actual application of the subdivision schemes
does not require any computational solving whatsoever.

§3. Subdivision for Homogeneous Order Differential Equations

In our previous work [13,14] we characterized subdivision schemes for the
solutions of homogeneous order linear partial differential equations. In this
framework, the subdivision matrix Sk-1 is determined as the solution to the
system of linear equations

DkSk- 1 = 2dUklDkl-, (3)

where d is the dimension of the domain. Recall that the differencing operator
Dk is the discrete approximation of the continuous differential operator D of
the original, continuous problem (1) on the level k grid Tk. Further, Uk-1
denotes a very simple linear transformation, called replication or upsampling,
that carries coefficients over the grid Tk- into coefficients over the next denser
grid Tk. The action of Uk-1 is very simple: Coefficients centered over knots in
Tk-1 are replicated over the same knots in the denser grid Tk while coefficients
centered over the remaining knots Tk - Tk-1 are set to zero. Thus, Uk- 1 is a
matrix whose rows are either zero or a standard unit vector, and Uk-1 can be
constructed easily and efficiently.

We visualize the meaning of equation (3) in Figure 2: The subdivision
matrix is determined so that a certain commutativity relationship holds be-
tween subdivision, upsampling and differencing. Differencing coefficients on
the coarse grid and upsampling those differences to the finer grid by inserting
zero for all new grid points (Uk-iDk-1, the right hand side of equation (3))
should yield the same result as subdividing the coefficients using the subdi-
vision scheme and then differencing on the finer grid (DkSk-1, the left hand
side of equation (3)).
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Fig. 2. The subdivision scheme is determined such that this commutativity re-
lationship holds.

The subdivision matrices Sk are the only unknowns of equation (3), and
we can use linear algebra to systematically solve for these subdivision matri-
ces. In our previous work [13] we showed that solutions produced by these
subdivision matrices are related to solutions produced by an interpolating fi-
nite element solver using a simple, fixed change of basis. Therefore, if the finite
element solver converges, then the subdivision solution is also well defined.

As a side note, in our previous work [13] we establish that the right-hand
side of the system, as solved by the subdivision scheme from relation (3), is
Dkpk = Uk-lUk-2 ... UoDopo where Pk = Sk-lPk-l and P0 is a user-given
set of initial control coefficients. In other words, the subdivision scheme leads
to a specific combination of the integer shifts of the Green function of the
differential operator.

Further, computation of the subdivision matrix Sk-1 based on relation
(3) requires the inversion of the differencing operator Dk. Consequently, the
computational work required for finding the subdivision matrix is at least
the same as inverting the finite difference system. However, later we will see
that the subdivision matrices can be precomputed. Thus, in contrast to a
conventional finite difference solver, new shapes can be generated extremely
efficiently.

As an example, we briefly derive subdivision schemes for piecewise poly-
nomial splines. Recall from deBoor [1] that the piecewise polynomial spline

p[x] of degree m satisfies the differential equation D[x]m+lp[x] = 0 where
D[x] denotes the first derivative in the variable x.

We employ generating functions [4] for concise and convenient encoding
of discrete coefficient sequences. To this end, we choose the domain grids for
our analysis as the dilates -21iZ of the integer grid 2Z. A generating function
Pk [x] is a power series that associates the ith coefficient of the discrete shape
Pk as the coefficient of x'. For example, the coefficient sequence {1, 2, 3, 4, 5}
is represented by 1 + 2x + 3x 2 + 4x 3 + 5x 4 .

Recall the definition of the first derivative operator,

liP[X] - p[X + t]
D[x]p[x] = -i+]

t-o t
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Substituting t - 1 yields

D[x]p[x] = lim 2T

k-.co

Thus, for x E 2'TZZ, the approximation of the first derivative is given by the
difference between two adjacent discretizations, normalized by the grid spac-
ing. In terms of generating functions, this differencing operation is represented
by the Laurent polynomial

Dk 2'1]
x1/

2 .

Higher order derivatives and differences are obtained by repeated application
of the respective continuous or discrete operator.

In terms of generating functions, the action of the upsampling operator
Uk can be captured very concisely: The expression p [x2] represents the up-
sampled coefficient sequence of p[x] as a generating function. Thus, in our
example of polynomial splines, the generating function sk[x] for the subdivi-
sion scheme satisfies

Dk[X]m+lSk[X] = 2Dk- 1 [x2]re+l,

which can be simplified to

Sk[X] = 2 (Dk-[x I m+1

Fortunately,
Dk-l[X2 ] 1 1+x

Dk[x] - 2 X11 2

i.e. the generating functions for the differencing operations on the level k - 1
and level k grids divide out yielding a simple expression independent of k. As
"a result, the subdivision mask for the degree m polynomial splines are exactly
the coefficients of

s []= 2 1 + X " m+ l

Remarkably, these are precisely the known subdivision schemes for piece-
wise linear functions (m = 1), Chaikin's algorithm [9] (m = 2) and the
Lane/Riesenfeld algorithm [6] (m = 3).

Previously we applied this strategy to derive subdivision schemes model-
ing solutions of homogeneous order linear differential equations yielding local,
stationary subdivision masks [13,14]. In this paper, we show that largely the
same strategy can be used to determine subdivision schemes for inhomoge-
neous order linear partial differential equations. As we will see, in this case
the actual subdivision masks may depend on the particular level of subdivi-
sion, i.e. are non-stationary. However, the masks can still be precomputed as
a closed form algebraic expression in the level of subdivision, which can then
be evaluated very efficiently during the actual application of the scheme.
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§4. Subdivision for Inhomogeneous Order Differential Equations

In this section we extend our systematic construction of subdivision schemes to
handle inhomogeneous order linear partial differential equations. We consider
the simple yet interesting problem of splines in tension [10]. The continuous
spline in tension p[x] for tension parameter a satisfies the differential equation

(D[x]4 - a 2 D[x]2) p[x] = 0, (4)

where D[x] again represents the continuous first derivative operator with re-
spect to the variable x. Note that equation (4) incorporates both second and
fourth derivatives of p[x], i.e. is inhomogeneous order.

Following the same strategy as in the derivations for polynomial splines,
we use generating functions to encode the discrete approximation Pk of the
spline in tension on grid Tk as well as for the representation of the differencing
operation Dk[x] = 2k 1/2- Next, we apply equation (3) to characterize the
subdivision scheme sk [x] as the solution to

(Dk [X]4 - a 2Dk [X]2) Sk1I[X] = 2 ( Dk-1 [X 2]
4 - a 2 Dk 1 EX2] 2) (5)

which can be simplified to

2 (Dk - [X2]4 -- 2Dk -l[X2]2)

Sk-1[x] = Dk[X]
4 

- a2Dk[x]
2  (6)

However, at this point we note that there is no simple closed-form ex-

pressionDk[X 2 IX 22 (unless a = 0). In other words,
there is no finitely- supported subdivision scheme Sk 1 l[x] for splines in ten-
sion. Moreover, the coefficients of the Laurent series expansion of the quotient
Sk-l[x] depend on the level of subdivision k, i.e. the subdivision scheme has
to be non-stationary.

Fortunately, due to the structure of equation (3) the coefficients of this
expansion decrease very rapidly away from the origin. Thus, we can approxi-
mate the infinite Laurent expansion of the subdivision mask well by a locally
supported scheme. To this end, we construct the generating function Sk-l[X]

of desired support symbolically with the actual coefficients s3_1 as unknowns,

n

Sk-l[X] = : S4_lXi
i=-n

for a user-defined support n. We then construct a generating function for the
residual of equation (5),

rk[x] = (Dk[x]4 - a'2Dk [x]2) Skl[X] - 2 (Dk-1 [X2]
4 

- a 2
Dk- 1 [X2]2)

TZirX
t .
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Using linear algebra, we can now solve for the unknowns sk_1 of (7) sym-
bolically by minimizing the least squares residual of the coefficients r'. The
motivation behind our strategy is to construct a best solution for the charac-
teristic equation (3) of given support. The results of this process are actual,
symbolic coefficients for the local subdivision scheme Sk-l[x], depending on
the tension parameter a as well as on the level k. As an exaniple, the ap-
proximation to (6) with the same support as the Lane-Riesenfeld algorithm
(n = 2) has

2 2k ( 6 9 3 2 1+10k+891s4 +4k .2+3525 64k a
4

+3994
1
+

2
k a 

6
+333 4k a 

8
+26a'0)

8 (693 21+12 k+g8914+5 k a 2
+3861 25 6 k a4+273 2 3+6k a6+675 16k a 8+27 4 1+k C'10+7 a 12)

as the coefficient for x-±2,

(41+k+a2) (693 1024k+171 4"k a+2 ,2 (891 256k+219 4 1+3k a2 +399 16k a
4

+7 .8))

4T(693 21+12 2k+891 
4 1+5 k 02+3861 256" a4+273 

2 3+6 k a
6

+675 1 6 k a
8

+27 4 1+k .1u+7 a")

as the coefficient for x t 1, and finally

20794 1+6 k .{_6039 4 1 3 k c 2.L 21 7 5 5 1 6 1+2k 34 +8 2 6 5 2 1+6 k 
6 

+5235 1 6 k .+2 1 3 4 1+k a10 
+56 .12

8(693 21+12 k+891 4 1+5k 3361 2 5 6 k a
4

+273 2 3+6k a
6

+675 16" a8+27 4 1+k .10+7 a
1 2

)

as the coefficient associated with xA. Note that for a = 0 these coefficients
exactly reduce to the subdivision scheme for natural cubic splines based on
the Lane-Riesenfeld algorithm.

During an actual application of the subdivision scheme, the user-defined
tension parameter a and the current level of subdivision k are substituted
into the symbolic solution Sk-l[x], yielding a simple generating function in
only the variable x. The coefficients of this generating function encode the
subdivision masks for the spline in tension for the given tension parameter a
at the current level k. Again, application of this subdivision scheme is very
efficient. For example, given a = 0, the above expression simplifies to the
generating function for natural cubic spline subdivision, independent of k.

k = 1 : 0.11063 0.55261 0.88274 0.55261 0.11063
k = 2 0.12345 0.52441 0.80178 0.52441 0.12345
k = 3 0.12489 0.50733 0.76487 0.50733 0.12489
k = 4 : 0.12499 0.50192 0.75386 0.50192 0.12499
k = 5 : 0.125 0.50049 0.75097 0.50049 0.125
k = 6 : 0.125 0.50012 0.75024 0.50012 0.125
k = 7 0.125 0.50003 0.75006 0.50003 0.125
k = 8 : 0.125 0.50001 0.75002 0.50001 0.125
k = 9 0.125 0.5 0.75 0.5 0.125
k = 10: 0.125 0.5 0.75 0.5 0.125
k = 11: 0.125 0.5 0.75 0.5 0.125

Fig. 3. Subdivision masks for a = 1, k = 0.
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Fig. 4. Splines in tension for varying a.

Figure 3 shows the actual coefficients of a locally supported generating
function (n = 2) for a = 1 and k = 1,..., 11. Coefficients were rounded to
five significant digits. Note that the coefficient sequence rapidly converges to
the subdivision scheme for natural cubic splines. Indeed, after a few rounds
of subdivision, a spline in tension behaves like a natural cubic spline over a
denser initial grid with its initial control coefficients determined by the first
few rounds of subdivision.

Figure 4 depicts application of four rounds of the local subdivision scheme
(support n = 4) for a ranging from 0 to 5. The initial control polygon is shown
as a thin line, while the subdivided curve is shown in solid. Note that as a
is increased, the curve follows the control polygon more closely. In the limit,
a -- oo, the curve is actually the piecewise linear interpolant of the initial
control points.

Figure 5 shows the least squares residuals -i(r )2 of approximations of
different sizes for a = 1 and k = 0 (the residual is largest for k = 0) on a
logarithmic scale. Note that for the approximation of size n = 4 the residual
is already very small.

At a higher level, we follow these steps in the derivation of non-stationary
subdivision schemes for inhomogeneous order linear partial differential equa-
tions:

Starting from the continuous, inhomogeneous order, linear partial dif-
ferential equations we discretize the continuous differential operators to yield
appropriate differencing operators over the respective subdivision grids Tk. We
then characterize the subdivision scheme sk-1 as the only unknown of equation
(3) using these differencing operators as well as simple replication/upsampling.
Next, we construct a representation of the subdivision scheme Sk-1 in terms
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Fig. 5. Residuals of local approximations with varying support.

of unknowns and symbolically build a residual expression representing the dif-
ference between left-hand side and right-hand side of equation (3). Finally,
we use linear algebra to solve symbolically for the unknowns of the subdivi-
sion scheme Sk-1, which may depend on the level of subdivision and possible
parameters to the original partial differential equations. As a result, applica-
tion of the subdivision scheme only involves instantiation of these constants,
yielding a locally supported, approximating subdivision scheme for solutions
of the original inhomogeneous order partial differential equations.

§5. Summary and Conclusion

In this paper, we showed that subdivision can be used to model solutions
of inhomogeneous order differential equations. Using the characterization of
the subdivision scheme based on the commutativity relationship (3), we can
systematically solve for these schemes. Even though the exact subdivision
schemes may be globally supported, locally supported schemes approximate
the solution well enough for practical purposes. Non-stationary schemes can
be handled using the same methodology by allowing the locally supported sub-
division masks to change between levels. Because these subdivision schemes
can be precomputed, the modeling of solutions of inhomogeneous order linear
partial differential equations can be handled very efficiently.

The proposed method for modeling solutions to inhomogeneous order lin-
ear differential equations is quite general and promises to be useful in a variety
of applications. First of all, approximations based on local subdivision schemes
are often sufficient for modeling applications. Indeed, the approximate solu-
tions are qualitatively indistinguishable from the exact solution. Second, if the
accuracy of the subdivision solution is not satisfactory, the subdivision scheme
can be used to produce very good initial estimates for more traditional solu-
tion methods. Third, the results of traditional solution methods often need to
be refined locally for visualization and analysis. A local subdivision scheme
can be used to refine solutions to any desired accuracy and provide better
accuracy than traditional polynomial fits.

Acknowledgments. This work was supported in part under NSF grant num-
ber CCR-9732344.
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