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Interpolation from Lagrange to Holberg

Michel LUger

Abstract. As the order 2n tends to infinity, Lagrange interpolators of
periodically sampled 1D functions converge to the sinc function modulated
by two exponentials. One is related to instabilities and the other to Gaus-
sian apodizing. The Hermite interpolation of Lagrange interpolators gives
convolutive Ck+l-differentiable Lagrange-Hermite interpolators. Whereas
their support has width of order 2n + 2, the active part of their impulse
response is width of order vx/, instead of 2n for Holberg interpolators,
which are optimal combinations of Lagrange-Hermite interpolators, and
therefore much more efficient. Efficient filters can be derived from these
differentiable interpolators, as well as numerical schemes of derivatives at
any abscissa.

§1. Introduction

Some applications require very large 2D or 3D regular grids, such as finite-
difference modeling of seismic waves, for instance. The processing of these
grids involves the computing of numerical schemes of first or second deriva-
tives, and also interpolators and filters. These quantities need to be evaluated
very efficiently because the requirements in terms of computation time and
memory use are critical.

Numerical schemes, interpolators and filters are interrelated issues, and
I choose to study them from the viewpoint of interpolation, which is the
most general. For sake of simplicity, I assume 1D interpolation of periodically
sampled functions, with unit-sampling rate and even orders.

§2. Lagrange Interpolators

Definition 1. For some function f with known values fi at abscissae xi = i,
i E [-n, n], the Lagrange interpolator ([9,6,2,31) of order 2n is

n n . n

k ---,X)= fi = p2n,(x). (1)
i=-n j=-n 3 i=-n

jv-i
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It can be shifted and centered at any integral abscissa i:

n
2 ki-n) X) ijP', X-0Z._ fP+ i,j(x - i).

j=-n

Proposition 2. As 2n - co, Lagrange polynomials converge to the sinc

function modulated by two exponentials:

sin 7r(x - i) 2 .2

PL2n(x) - j- exp( x- ) exp(n ) (1 + O(n- 3 )). (2)

Proof. Simple changes in (1) give

L ~ (1)2n-i(n!) 2X n 2
p2n, i W n -- -i)' 1(1- 52 .(3)

(n +i)! (n-i x-)7

Since l1(1 -2) 2 ), we havj= 37 1l

Sncn  _X2 _sin( () -o () w
3r 33

j=l j=n+l

l j=l-2) + (( )), and since -O(j - 4 ) +

_1/2 t, we obtain

0 2  T2

ft (1 x 7) exp(- x + O(n-')). (5)
j=n+l

Moreover, by using Stirling formula n! = nn exp(-n) 2 (1 + 1 + 1 +

O(n- 3 )), and noting that ln(l+ - + +O(n-a)) = +O(n- ) and that

T2'_ (2 - n = O(n- 3 ), we obtain In ( -!) -(n + i + 1)ln(1 +
12n n i i (n+i)! (n-i)!

)-(n - i+ )ln(1 l + O(n-3). Since ln(1 +x) = x - L- + -1- + O(x4),
n 2  n -2

we have in (n!)2  - 2 + O(n- 3 ) and hence

(n!)2  = exp( - i + Q(n 3 )). (6)

(n + i)! (n - i)! n +

Noting that (-1)i sin 7rx = sin 7r(x - i) and inserting (4), (5) and (6) in (3)

concludes the proof. 0
According to the first term of (2), Lagrange polynomials converge to the

perfect interpolator sinc function (Fig. 1). Away from the center of the interval

of the data points, the first exponential explains the well-known instabilities

(a small change in the data results in a large change in the interpolation), and

the second one corresponds to Gaussian apodizing (see apodization in [10]),

that is, the vanishing effect of the non-centered data points. Note that these

two exponentials compensate one another as x -- i.
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4 -2= O 2":/ j4""/-/abscissa

Fig. 1. Lagrange polynomials of order 14 divided by the two exponentials of (2),
for i = 0, 2, 4, 6. Related sinc functions in dotted lines.

§3. Stationary Lagrange Interpolators

Since a Lagrange interpolator is stable only near the middle of the interval of
the contributing data points, a natural idea is to change it for each interval
between two successive points, in such a way that the interpolator is always
used at its best.

Definition 3. The stationary Lagrange interpolator of order 2n uses at ab-
scissa x the Lagrange interpolator of order 2n centered at ix, with x = ix + dx,
ix E IN, dx E [0, 1[:

n
L2n({fk}kEz,X) = nfi+j P~',j(d.) = £' (x). (7)

j=-n

Remark 4. Any interpolator such that I({fk}kE2z, x) bj'rza . pj(dx),
with a, b and pj independent of ix, is convolutive, that is, there exists a
continuous function A(x) such that 1({fk}kEZ, X) = A(f)*A(x), with A(f) =

-iE fi 6(x - i) being the "Dirac comb" modulated by function f.

This is obvious by considering the impulse response A(x) = 1({ 6 ko}k2Z, x) =
P-i. (dx), with bk0 the Kronecker's symbol.

As a particular consequence, stationary Lagrange interpolators are con-
volutive with impulse responses A2,(x) = p2n, _. (dx). Moreover, they are
also subject to Gaussian apodizing since, as 2n --* oo,

A2n(x) sin X exp( X) (8)

It is clear from Fig. 2 that these impulse responses vanish very rapidly as
compared to the sinc function.

Remark 5. Since Vk, k E [1, 2n], f+ xkA 2n(x)dx = 0, then, with F denot-

ing the Fourier transform, Vk, k c [1, 2n], (.F(A 2n)(u))(k_0 = 0 ([1]).

Hence, stationary Lagrange interpolators are good at low frequencies.
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Fig. 3. Right part of impulse responses of Hermite interpolators according to
(9), their asymptotic form according (10) in dotted lines.

Let us define k, L = fI xk(1 - x)ldx. Integrating by parts gives Ik, =

' Ik+1,L-1, that is, Ik, k --- ' 2k,O = CkI2k, O by recurrence. Sincek+1 2) 2

2k, , k, and therefore, from (11),

o~ ~ ~ ~ ~ 1 -k+ we obai k. 2 +1C adt

(1 - 7kO(X))( 1 ) = (2k + 1) C2 xk(l - x)k (12)

The binomial theorem and a simple integration concludes the proof of (9).

Moreover, by the change of variable x= + +u in (12), we have -() ( u) =

(2k + 1) C 4- (1- 4u2)k. For any abscissa ul > 0 we may define Uk =

and we have exp(-4ku 2 ) = exp(-4u 2 ) and (1 - 4u2)k - (1 - 4 1)k. Since2~~ k = U2)ince U

limk-.o(1 - 4 a) = exp(-4u ), then (1 - 4u 2 )k exp(-4ku2 ) as k , oo.

Moreover, by using C2k= and Stirling formula, we obtain, as k --

oo, (2k + 1)Ckk4 - k - 2, and then -7o)(x) 2k exp(-4k(x -7r kO7

Symmetrically, we have 1(l)(x) - 2 exp(-4k(x + )2) for x E [-1,0].7r 2

Therefore, ?(1)(x) - 2V/ exp(-4kx2 )* (6(x + )-6(x- 1)), which concludes

the proof of (10) since Flo1(')(x) = b(x + 6)-6(x- ). El
Note that Lagrange and Hermite interpolators could be considered as

Fourier pairs since the right members of (8) and (10) are mutual Fourier
transforms if r2n = 4k.

§5. Lagrange-Hermite Interpolators

Since stationary Lagrange interpolators are good at low frequencies and since
Hermite interpolators are differentiable, hence good at high frequencies, com-
bining them is a natural idea.

Definition 8. For k > 0, the Lagrange-Hermite interpolator of order 2n is the
smooth Hermite interpolation of two successive Lagrange interpolators, that
is,

Mk+(X) i+12n =k(- )C2nX+l(1 -x)f' (X)
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Fig. 4. Right part of the impulse responses of Cl-differentiable Lagrange-Hermite
interpolators (a), sinc in dotted lines. Their left part divided by the sinc

(b), as compared to Gaussian curves exp(n-X 2 ), in dotted lines.

Proposition 9. For k > 0, Lagrange-Hermite interpolators Mk+1 are Ck+1 -

differentiable.

Proof: Since it is piecewise polynomial, M^k+ 1 is C--differentiable for all
Mk+12n

non-integral abscissas x. Moreover, 2nZ' is convolutive, and thus it is
sufficient to examine it around x = 0. From Def. 8, for x > 0, we have
Mk2+l - rk0 £0n+(1-rk0) £1n. From (12), wehave77kO(x) = 1-O(xk+l), andMk+l C.X (kl '1

then d2n(x) = °,(x) + (xA+ i ) (, - £°n). Since the interpolators £°n
and C2in are continuous, C'n -C n = O(x) and thus M = £C + O(xk+2).

Therefore, for any j C [1, k + 1], M -k+1(j)(0+) = = £(j) (0). The same argu-
metwih^k+1 -1 o k+ 1 (j ) (0- )

mnent with '2n =k0nl + (1- lkO) £2n for x <0 leads to M ,, ( -

rO(U))O-2 ) which concludes the proof since £°o,(x) is a polynomial. LI

The Fourier transform of Lagrange-Hermite impulse responses (which I
call y2jn for interpolator Mk,) are very similar to those of stationary Lagrange
interpolators below the sampling frequency. Beyond the sampling frequency,
for the orders 2 to 14, the rejection in dB of the greatest secondary lobe is
27, 30, 32, 33, 34, 35 and 35 in the CO case, 42, 47, 51, 53, 55, 57 and 58 in
the C1 case, 33, 36, 37, 38, 39, 40 and 41 in the C2 case, and slowly decreases
for higher differentiabilities. From this viewpoint, the C' Lagrange-Hermite
interpolators are the best choice.

§6. Holberg Interpolators

Lagrange-Hermite interpolators are good at low and high frequencies, but
unsatisfactory inbetween. Indeed, Gaussian apodizing makes A2n as well as
/42n gradually ineffective, since their cost, which is proportional to the length

of their support, increases like n, whereas their active part widens like Nf-.
Faced with the same problem in terms of numerical schemes, Holberg ([5]) had
the idea of combining several orders and optimizing the passband for given
tolerance and maximal order. Holberg interpolators just proceed from the

same idea.
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Fig. 5. Impulse responses of C'-differentiable and 0.1%-precise Holberg interpo-
lators (a) (Lagrange-Hermite in grey, sinc in dotted lines). Their Fourier
transform (b) and an enlargement of them (c). The passband-vs-order
diagram (d) showing the linear behaviour of Holberg interpolators and
the parabolic behaviour of the Lagrange-Hermite interpolators.

Definition 10. The 2n-hybrid order, Ck-differentiable and E-precise Hol-
berg interpolator is the linear combination 'E 2ii /M such that

p ,3C - 1 and such that the following passband is maximized,

B ()3, On' 1) = sup({v; V v; ZPi(Fi)(t ) - 1I }).

Clearly, these Holberg interpolators are convolutive, with impulse responses
k,e E n = e

Tt2n 1 A 2 i]2n"

Fig. 5 illustrates the case of & = 0.1% and k = 1 (C1 -differentiability).
Fig. 5a shows that the impulse responses of Holberg interpolators decrease
much slower than the Lagrange-Hermite interpolators. The sum of the ,3 is
one, but their absolute sum may be far from one, for instance about 4300 in
the case of the 14th order. In the Fourier domain, Fig. 5b, together with its
enlargement Fig. 5c, shows that the passband is increased a lot from Lagrange-
Hermite to Holberg.

For tolerances 1% and 0.1%, Fig. 5d shows the parabolic behaviour around
infinite order of the passbands of the Lagrange-Hermite interpolators (grey
arrows are parabolas with vertical tangent at the corner). This is due to
Gaussian apodizing, since the Fourier transform of (8) gives the convolution
of a box function with a Gaussian function that narrows like - as n --* oo.
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Fig. 6. Right part of the impulse responses of the 10th-order Lagrange-Hermite
(in grey) and Holberg interpolators of first (a) and second (b) deriva-
tives. Perfect (but truncated) interpolators for derivatives are displayed
in dotted lines.

On the contrary, the passbands of the Holberg interpolators have a linear
behaviour (black arrows are straight), which is the best possible one because
the active part of the impulse response of the interpolator cannot expand faster
than its support. The passbands are referred to the sampling frequency.

The optimization of passband B in the f space is difficult because B
is discontinuous along n - 1 hypersurfaces (related to tangencies at 1 ± E)
which intersect at the optimum. To overcome this difficulty, I used a method
consisting of the following steps:

1) choose a strictly increasing sequence of frequencies vi in [0, 0.5[, with
l<i<n-1,

2) set at 1+E the value of the combination at frequency vn-1, 1 -e at Vn-2,

1 + E at Vn-3, and so on until vj, and finally 1 at frequency v0 = 0,
3) solve the linear system for the f,
4) detect the frequencies at which the combination is extremal,
5) if these frequencies are close to the vi, then stop, else update the vi and

come back to step 2.

A priori, the feasability of steps 3 and 4 and the convergence are not
guaranteed. In practice however, this method works simply well, with less
than ten iterations. See also [7,8] on optimal filtering.

§7. Applications

The main application of Holberg interpolators are Holberg numerical schemes
([5]) because they are cost-effective in the field of numerical simulation of
acoustic wave propagation. Especially in 3D, this effectiveness is of consider-
able importance because of the huge amount of computing time needed.

From a 2n-order Ck-differentiable Lagrange-Hermite or Holberg interpola-
tor, 2n-order Ck-m-differentiable interpolators of the mth derivative (m < k)
can be easily derived, as well as numerical schemes of these derivatives at any
abscissa. Fig. 6 shows the responses of the 10th-order Lagrange-Hermite and
Holberg (E = 0.1%) interpolators of first (a) and second (b) derivatives. The
values at integral abscissas give standard numerical schemes. In a similar way,
the integration of these impulse responses could result in Newton-Cotes-like
Holberg formulas (see Newton-Cotes Formulas in [10]).
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Fig. 7. A seismic section (a) has been horizontally filtered (b) for antialiasing,
threefold undersampled (c), and finally interpolated (d).

Holberg interpolators, and numerical filters that can be generated from
them, are also interesting for their efficiency. For instance, the response of
a 1%precise, 6th-order, C' Holberg interpolator has been fourfold oversamn-
pled and used to filter horizontally Fig. 7a into Fig. 7b for antialiasing. The
threefold undersampling of Fig. 7b gives Fig. 7c. The 1%precise, 6th-order,
C' threefold Holberg interpolation of Fig. 7c gives Fig. 7d. The similarity of
(b) and (d) measures the quality of the filtering and of the interpolation.

§8. Conclusions

In the case of periodic data points, Lagrange interpolators converge to a sinc

function multiplied by two exponentials. The first one explains the well-
known instabilities of Lagrange polynomials, which only vanish at the center
of the interval of the data points. The second exponential explains the van-
ishing influence of non-centered data points (Gaussian apodizing). Station-
ary Lagrange interpolators are stable and convolutive. Hermite interpolators
are as differentiable as desired and convolutive and their impulse response
converges to the convolution of a box function with a Gaussian function.
Lagrange-Hermite interpolators combine the advantages of unlimited order
and differentiability. Because of Gaussian apodizing, these interpolators be-
come ineffective at high orders. On the other hand, Holberg interpolators
have a much better quality/cost ratio since they are optimal combinations of
Lagrange-Hermite interpolators. From Holberg interpolators, efficient numer-
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ical schemes of derivatives can be evaluated at any abscissa, and oversampling
their impulse response gives short but efficient filters.

Acknowledgments. I would like to thank my colleagues J. Brac, F. Cop-
pens, L. Grizon, E. Maffiolo, L. Nicol6tis, J. Pirot and T. Tonellot for their
suggestions and many fruitful discussions.
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