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On Curve Interpolation in Rd

Jernej Kozak and Emil Zagar

Abstract. In this paper the interpolation by G2 continuous spline curves
of degree n in Rad is studied. There are r interior and two boundary data
points interpolated on each segment of the spline curve. The general form
of the spline curve, as well as the defining system of nonlinear equations
are derived. The asymptotic existence of the solution, and the approxi-
mation order are studied for the polynomial case only. It is shown that
the optimal approximation order is achieved, and asymptotic existence is
established provided the relation r = n - 2 is satisfied. These conclusions
hold independently of d. It is also pointed out that the underlying analysis
could not be carried over to the case r = n - 1.

§1. Introduction

The interpolation problem considered is the following. Let the points

To, Tl,..., TN E ]Rd, Tj 76 Tj+i, all j, d > 2, (1)

and the tangent directions
do, dN (2)

at the boundary points be given. Find a G2 continuous spline curve Bn of
degree n which interpolates the prescribed data.

The problem appeared first as a particular limit case in [2], and was
further generalized in several papers, among them in [3-5,6,9-10]. A general
approach to the approximation order achieved can be found in [8].

Here, the general setup is tackled. The interpolating spline curve in the
Lagrange form is established and the defining system of nonlinear equations
is derived in general. However, the asymptotic existence of the solution (i.e.
the existence of the solution when given points are sampled densely enough)
and the approximation order turned out too comprehensive to be studied here
in a general framework. The positive conclusions for the single segment case
when r = n - 2 are established. It is possible to extend these results to

Curve and Surface Fitting: Saint-Malo 1999 263
Albert Cohen, Christophe Rabut, and Larry L. Schumaker (eds.), pp. 263-272.
Copyright 0 2000 by Vanderbilt University Press, Nashville, TN.
ISBN 0-8265-1357-3.
All rights of reproduction in any form reserved.



264 J. Kozak and E. Zagar

the m-segment spline curve, but the proofs are not short, and will appear
elsewhere. On the contrary, as one could guess from [8], the case r = n - 1 is
not encouraging.

Why would one use the G2-continuous splines as interpolating curves?
Quite clearly, the derivative continuity at the breakpoints becomes in this
way independent of the local parametrisation. Also, these curves could be
seen as a generalization of the odd order spline function interpolation at knots,
applied so successfully in many cases. The order of G-continuity 2 is pinned
down by the human eye, sometimes quite important in CAGD: it can detect
the continuity, the continuity of the tangent direction and the curvature, but
hardly higher order geometric quantities.

Throughout the paper bold faced letters will stand for vectors, and or-
dinary ones for scalars. The dot product on ]Rd will be denoted by - and its
implied norm by 11.H1. Derivatives with respect to the global (or local) pa-
rameter will be denoted by* (or d/d(), and those with respect to the natural
parameter by '.

Now let B, be a continuous spline curve of degree n with m segments

B :=B [CB,,r] -- Rd

corresponding to the breakpoints

(0 < (i < ... < ea

We suppose that the pieces are locally parametrized on [0, 1] as

B(C) = B(( C E [(t-l, (t].

Suppose B interpolates the data (1), and (2). If r interior and two boundary
points are to be met on each segment, then N = m(r + 1). Further, on the
f-th segment the interpolation conditions read

Be(tj)-=Ttj := T(yl)(r+l)+j, j = 0,1,... ,r + 1, = 1,2,... ,m, (3)

where
0 : tto < ti,1 < ... < t1,r+1 := 1,

and (tj)r=j are the unknown parameters to be determined. Let x A y
(xjyj - xjyi)i<j denote the 2-wedge product. The geometric continuity of B
requires the tangent direction

1 h 
(4)

as well as the curvature

1_ BAB (5)
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Fig. 1. An interpolating spline curve with three segments

to be continuous at the breakpoints. Additionally, at the boundary points the
tangent directions do and dN have to be interpolated too, i.e.,

do A/b((0) = b(C.m) AdN = 0. (6)

Fig. 1 gives an example of such an interpolating spline curve for r = 1, n = 3,
and d = 3. A brief look at the conditions (3)-(6) reveals that the number of in-
dependent equations would be equal to the number of independent unknowns
if

dn- (d- 1)r- =3d- 2. (7)

As already observed in [5], for fixed d this Diophantine equation always has
an infinite number of nonnegative solutions. The following lemma gives its
general solution.

Lemma 1. The possible choices of pairs r and n that -satisfy (7) for fixed d
are given by

r=d-2+dk, n=d+(d-1)k, k=0,1,..... (8)

Proof: The relation (7) can be rewritten as

d(n - d) - (d- 1)(r - d± 2) = 0.

Since d > 2, the numbers d and d - 1 are relatively prime. So d must divide
r - d + 2, and d - 1 must divide n - d, i.e.,

r-d+2 n-d
d - =_- 1-=k

d d-1k

for an integer k. But r = d- 2 + dk > 0 implies k > 2 -_1 > -1, and the
conclusion follows. r1
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§2. The Defining Equations

Several approaches were used to simplify the conditions (3)-(6) for particular
choices of d, n, and r. Here we show that this can be done in general, which
will provide an opportunity to unify the computer programs. Let us consider
a single segment first. In this case, the data to be interpolated are the points
To,T 1 ,...,Tr+i, Tj : Tj+I, as well as tangent directions do, dr+l at the
boundary points. Suppose r and n are given by (8). Consider the case n = r+2
first, i.e., k = 0. The interpolating polynomial curve can be written explicitly
in Lagrange form as

r+1

B := bw + ZTJjc

witho
with

r+1Wt := II(t - tj) L(t) .- t (9)
j=O ( jw(j

tj := t1,j, and the values (tj)7=1 , to be determined. Here b c Rd denotes the
unknown leading coefficient vector. If k > 1, one has

r + 2 = d(k + 1) > d(k + 1) - k = n,

and B is of degree at most r + 1, i.e.,

r+1

B = Z:TjL,.
j=o

In particular, this imposes additional conditions

r+1

degree ZTj Lj < n (10)
j=O

for k > 1. An easy way to meet the tangent direction conditions (6) is to
introduce two additional (strictly positive) real unknowns, ao and ar+1, and
require

b(to) = aodo, B(tr+l) -lr+ldr+l. (11)

Let

T1 = To :=to, Tj :=tj, j = 1,2,... ,r, Tr+2 Tr+1 := r+i. (12)

Since B is a polynomial of degree < n, the divided difference, based upon

n+2=r+4-k

points maps it to zero. So the conditions (11) and (10) can be written in a
compact form as

[TjI, Tj, . .-. , Tj+r+2-k]B = 0, j = 0,1,..., k, (13)



On Curve Interpolation in R d 267

which is a system of d(k + 1) nonlinear equations for r + 2 = d(k + 1) scalar
unknowns

00i t1; t2, .. • • tr, a~r+1. (14)

In the case n = r + 2, one has to determine additionally the coefficient vector
b, for example as

b = [to,to,t1,... ,tr,tr+i]B = [to,ti,... ,tr,tr+itr+l]B. (15)

Now, for an m-segment spline curve, the directions dt, f = 1, 2,..., m - 1, are
unknown, as well as

af,o, ttlt,2, ... , tt,r, +, •+ = 1,2,...,m. (16)

But one can still write the interpolation conditions on the ý-th segment as

[Tij-1, Tij, ... , T7,j+r+2-k]B' = 0, j = 0, 1,... , k, (17)

where T7,j are defined as in (12), but this time for the composite case. In
addition, the missing (d - 1)(m - 1) equations are supplied by the continuity
conditions of the curvature (5).

§3. Asymptotic Existence and Approximation Order

The system of equations based on (17) and continuity of curvature (5) is non-
linear, and one of the approaches to study it is to assume that the data (1) and
(2) are based upon a smooth underlying regular parametric curve f : I --+ Rd,

parametrized by the arclength s. The local expansion of the curve f, and the
data Ttj (sampled densely enough), give rise to an asymptotic analysis of the
nonlinear system. The simplest way to obtain the local expansion is to use the
Frenet frame as the local coordinate system, and the Frenet-Serret formulae
to obtain this expansion. Let (ei(s))d 1 denote the Frenet frame, with

f' el. (18)

The Frenet-Serret formulae read

e'(s) =i(s)e2(S),

el(s) --. i~l(s)ei~l(s) - i(s)ei~l(s), i = 2,3,...,d- 1, (19)

e'd(S) - -Kd1(s)ed_1(S),

where ri are first d - 1 principal curvatures of f, expanded as

1 1 2

Ki S) = io + T!- .i1S + T.Ki2s + '" (20)

Since f is a regular curve, i0o > const > 0, i = 1,2,..., d - 2. We will
additionally assume that r-do > const > 0. Beginning with (18), the higher
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derivatives of f can be computed by (19) and (20). This produces the required
expansion

,1 ,, - 2 + .
f(s) = f(O) + f (O)s-+ ,f"(0)s -

1 2 s3

= f(O) + (S - 1 21 ,0 0 -' + ")el(0) (21)
+11,s 21 3+1 ,3 *

+ t,,Os 2 + I's + ')e 2(0) +tKOK2,0 3 *+..)e3 (0)+

Let us now consider the single segment case of the interpolation problem
with data based on a smooth f : [0, h] _ Rd,

do =- f'(77oh), Tj = f (?]jh), j =O0, 1.,r + 1, d,+l = f'(?]r+lh),

with points separated independently of h, i.e.,

0 =: 7 < 7?1 < "' < , < ?7rl-1:.

Since translation and rotation do not influence the asymptotic analysis, we
may assume f(0) = 0, and

ei(0)=(,)j=l, i = 1,2,...,d. (22)

Then, with the help of (21), one obtains

k[ i2-1 )d

ff(qj h) = -q,o + 0(h+'l) , (23)
q=0 O

and a similar expression for f'(h). Since the divided difference is a linear
functional, we can normalize the system (13) by multiplying the data values
by D-', with

D:= diag hI h1  q,O ):

SI ! q=1 /i=1"

Let f(s) := (s')d 1 denote the leading part of the normalized f. Then

[to, to,ti, . . ,tr,tr+itr+i]D-1 B = [to, to,t,. .. .,tr,tr+itr+i]B + O(h),
(24)

and B is a polynomial of degree < n = r + 2 that satisfies the interpolation
conditions

B(tj) = jf(,j), j=0,r + 1,

B(tj) = f(qj), j= 01,.. .,r,r +,

where
&0  -, r-1 :=-

h r1. h
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Note that all the components of are polynomials of degree < d = r + 2. This
implies that

[r/, 10, r/low,. . . ,lr/,, r,+l,ir,+l] = 0, (25)

and the solution of (24) in the limit h -- 0 now reads as

t*:= ( ,lt , ,t *,•+ )=(,/,/,. r, ) (26)

To prove the existence of the solution for h small enough, it is sufficient to
show that the Jacobian of the system (24) is nonsingular at the limit (26).
The Jacobian will be determined with the help of the following fact: if xj is
different from all the other points xi, and if a function g is smooth enough,
one has

I [.,xj,...])g=-d ([...,xj,.-.]g) g'(Xj)(a-j[ . .... r, ]g i(xj - Xi)

g(J (27)
g'f.(x.-Xj)= [. ., j, •,..]g l- (Xj - xi)'

Consider now B +(B-f)+f. Since B-f = 0 at t*, all its partial derivatives
with respect to tj vanish, and this difference contributes to the Jacobian at
the limit point t* only in the first and last column, i.e.,

OOo[to, to, tl,., tr, tr+l, tr+l](1 f1* ((b/ --Zrj'( 770 ),f(/)
0a 1* (70-rltJ70

a r~ [t0, t0, t1,'' tr 7tr+l) tr+llB - j) It - (Ir~ -- j)'r/~ )f (77r+l),

(28)
where w is given by (9), and

w:= wi.

The polynomial curve f does not depend on F0, &,+,, and from (27) and (25)
one obtains the columns 2, 3,.. ., r + 1 with j = 1, 2,..., r as

9t3  ) (77j - 7r0)(Tqj -1 r+l)&Y(tj)

It is now straightforward to see that the Jacobian at t* is the Vandermonde
matrix V(r70,771,... , 77r+1), multiplied by D, := diag(i)4= from the left, and
by

fo te riagh. Ti(s0)' prea( -the r'or( -thr)ef'(lor) the rem.

from the right. This prepares the proof of the following theorem.
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Theorem 2. The system (13) has a unique solution for h small enough. The
approximation order of the resulting interpolating polynomial curve B, is
optimal, i.e., r + 4 = n + 2.

Proof: Since the matrices V('qO,'i,... ,?7r+), D1 and D 2 are nonsingular,
the Jacobian at the limit point tV is nonsingular, too, and the existence of a
unique solution for h small enough is established. Furthermore, the unknown
parameters are of the form

o = ar-1 = h + 0(h 2 ), tj = ?7j + 0(h), j = 1, 2,...,r. (29)

Since there are r + 2 points, as well as two directions interpolated, the optimal
approximation order is quite clearly < r + 4. The proof will now follow the
approach applied in [2], and extended in [5]. It is based on a reparametrisation
that transforms the direction interpolation to the derivative interpolation, and
gives an estimate of the parametric approximation order as defined in [7].
Recall (22), and the fact that interpolation conditions are satisfied. By [2]
and [5], it is now enough to confirm that all the components of f and B can
be reparametrized by the ordinate of the first component of both curves. As
to f, for h small enough this fact is obvious. The first component behaves
by (21) as s + 0(s 3 ), and the others at least as 0(52). To establish the same
conclusion for B, it is enough to show that

B• = ch(61i).j i 4 0(h 2 ), c • 0. (30)

Further, the optimal approximation order proof depends on the additional
relations

B (q)=0(hq), q=2,3,...,r+2. (31)

The result required then follows from the standard error estimate of interpo-
lation, and the fact that the (r + 4)-th derivative of B with respect to the new
parameter is bounded independently of h. Let us verify the relations (30) and
(31). Recall first

r+1 r+1

tq = tqj(t), q=0,1,...,r+1, tr+2 = w(t) + Etj+ 2Lj(t). (32)
j=0 j=0

The divided difference [tO, tO, t,. .. , tr,t+1] maps polynomials of degree <
r + 1 = d - 1 to zero, and depends continuously on its arguments if applied to
a smooth function. Thus b by (15) and (23) near the limit point t* behaves
like

b = (.(h), 0(hd),..., 0(ha), Xd hd + 0(hd+1))T,

where Xi = 1Iq=0 
1

q,O > 0. On the other hand, (29) and (32) imply that

r+1 r+1

E (t) = Ef (7 ,hj (t)
j=0 j=0

= (x 1 h t,., Xd -1 h d-1 t d-1, Xd hd (td _ cO(t)))T (1 +- 0.(h)).
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But
r+1

B(q)(t) = bw(t)(q) + ET ij~(t)(q), q =1,2,...,r+2,
j=O

and (31) follows. The proof is complete. 13

There is no hope that this approach could be used for all k. In fact, it
fails already for k = 1, as we will show now. By (13), the equation (24) is
replaced by

[to,to,ti,... ,trtr+l]D- 1 B = [toto,tl,... ,tr, tr+l]B + 0(h),
[to,ti,-... 7,,trt+l, tr+l]D-1B = [to, ti.... , tri tr+17 tr+l]B + 0(h).

Further, as in the proof of Theorem 2, the first column of the Jacobian is
determined from

a [t o ) t o ) t l ,5. . . ,it r 7t r + l ]1 -1 .I . - '( o ( 77 0) ,
6a 10'70

0o
a [to, ti,..., ttr+li, tr+l]( ) = 0,Oao

the last column from
a

5ý [to,to,ti,... ,t4,t+l](Bf) * =0,

[to,ti,... ,tr,tr+1,tr+1](B-) - lf (?7±i)

and the other columns from

( [to, to, ti,. tr, tr+i]) fit* 1 fI(

a [to, ti. ... )tr~tr+litr+i]) jit* 1 -'t J, ________

After normalizing the Jacobian from the left by Dj1, and by D2 1 from the
right one obtains the matrix A := (aij)i,=j1 with

ai,= - i,1, i = 1,2,... ,2d,
ai,2d -= 0, ai+d,2d 1, i = 1, 2,., d,

and
aij 1 } }1 ai+ddj = 773-I, 1~, 2,..., d, j =2,3,...,2d -1.

A simple rank preserving transformation
aij •-4 ai~j -- ai-lij, i = 2d, 2d - 1,.,d + 1, j = 1, 2,..., 2d,

transforms A to a matrix with row i equal to row i + d for i = 2, 3,.. ., d. It
is now easy to see that the rank of the matrix A is d + 1, and consequently
dim ker A = d - 1. Thus, since the Jacobian is singular, some other approach
such as [1], pp. 154-155, should be applied to carry out the asymptotic anal-
ysis.
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