UNCLASSIFIED

Defense Technical Informatipn Center
Compilation Part Notice

ADPO11993
TTTLE: Best Approximation Algorithms: A Unified Approach
[DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: International Conference on Curves and Surfaces [4th], Saint-Malo,
[France, 1-7 July 1999. Proceedings, Volume 2. Curve and Surface Fitting

To order the complete compilation report, use: ADA399401

The component part is provided here to allow users access to individually authored sections
ol proceedings, annals, symposia, etc. However, the component should be considered within
the context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP011967 thru ADP012009

UNCLASSIFIED




Best Approximation Algorithms:
A Unified Approach

V. V. Kovtunets

Abstract. A generalization of the Remez algorithm is proposed. The
new approach uses differential properties of the best approximation opera-
tor. The method was developed for polynomial approximation of complex-
value functions. In this paper the convergence of algorithm is proved for
Banach spaces.

§1. Introduction

Let us consider the best approximation operator
P:B-P,,

where B is a Banach space (complex in general), P,, an n-dimensional sub-
space. Suppose that P, is univalent and one-side differentiable in any direc-
tion [1]. This assumption is valid when:

i) B = C(Q,R) Q-compact, and P,, is a Chebyshev subspace (in particular,
when P, is the subspace of algebraic polynomials of degree less or equal
ton —1[2,9]);

ii) B = C(Q,C),Q is finite set, and P,, is an n-dimensional Chebyshev
subspace [3];

iiiy B = L, p > 1, and P, is an n-dimensional subspace (R. Holmes and
B. Kripke).

Originally the differential properties of the best approximation operator were
applied to the development of algorithms in {4,5]. The goal was to generalize
the Remez algorithm for complex-valued functions. In [6] the new best approx-
imation algorithm was applied to the approximation of conformal mappings
by polynomials. In [7] it was shown that for real polynomial approximation,
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such an approach generates exactly the Remez algorithm, and a stronger con-
vergence theorem was proven using differentiation technique. In [8,1], the
new approach was applied successfully to nonlinear approximation, including
rational and generalized rational uniform approximations.

Here we show that the method is applicable to the best approximation
from a finite-dimensional subspace in the arbitrary Banach space if the best
approximation operator is one-sided differentiable.

§2. Description of the Algorithm

Suppose that the i-th step of the algorithm is performed to find the best
approximation of the element f € B, and that the element P; € P, is found.
If || — Pi|| = E(f), then the process is finished. Otherwise the inequality

If — Bl > E(f)

holds, and the next step should be performed.
In order to construct the next approximation F;;;, we construct an aux-
iliary element g; € B such that the equality

If+gi— Bl = |If - Bl (1)

holds. Suppose the following assumptions are true:

Assumption 1. The mapping G = G(f) : P, — B, which defines the auxil-
iary element g; = G(f, P;) is continuous.

Assumption 2. For all functionals z € B* with properties |z(f — P;)| =
If = Bill,|zlls« = 1, equality z(g;) = O holds. Moreover, for every such
extremal functional z, a weak neighbourhood V' (z) C B* exists such that

Rey(f — P)y(g9:) >0, VyeV(z)n{ze B, |z| =1}
Assumption 3. For given fixed f the mapping D = D(f) : B — Py, which
defines the derivative D; = D(f, g;), is continuous.

These assumptions may be satisfied easily for real and complex uniform
approximations [4,5,7]. When the derivative

D, = dP(f + (1 - t)gi)
dt t=40

is calculated (usually as the solution of system of linear algebraic equations),
the next element P;y; is computed as

P, =P, +tD;, (2)

where cr; < t; < 7;,0 < ¢ = const <1, and 7; is the minimal value of ¢, for
which . N
Ei(m) = min{E;(t) = ||f - P, —tD;]|,0 < ¢t < 1}




Best Approzimation Algorithms 257
§3. Main Theorem

Theorem 1. For given f € B\Py, the sequence {P;}%, constructed accord-
ing to the general scheme (see the previous section) converges to the element
P(f) of best approximation of f € B.

Proof: Let us write

E‘i = ”f - Pi||1
Ei(t) = If + 1 = t)g: = P(f + (1 - t)ga)ll,
E() ||f (1—t)g; — P; — tDl], 3)

Q; = E:(-FO),
Ef =min{E;(t),0<t <1} = Ei(r;), i>0.
The convexity of the function F;(t) implies
Ei(+0) < Ei(1) - E(0) = E(f) - E(f +9:) = E(f) - |If - Bl <0.
Since
|Ei(t) — Ei(t)] < |P(f + (1 — t)gi) — P. — tDs]| = o(t), t — +0,

the equality _
Ei(+0) = E{(+0)

holds. Therefore,

E{(+0) < E(f) - E: <0. 4)
Now we show that there exists € > 0 such that

~ = 26%|.D;]?

E;(t) < E;(t) + ——— 5

for all 0 <t < €. Suppose that the last statement is invalid. Then there is a
sequence {}, # — +0, [ — oo, such that

2t7|| DyJ|?
I = Pe= D] > 1+ (1=t~ Bo— D + THE, 121
1

Choosing a subsequence if necessary, we may consider the weakly conver-
gent sequence of functionals {z;} C B*, VI ||z;|| =1, such that

267 Di|* [>1. (6)

|$[(f P —tlD )I > ||f+ (1 '—tl)gz - tlD )” + ”f _ Pz‘”, -

Let 29 = lim;_, 0 2;. Then inequality (6) implies

lzo(f — P)l 2 |If +9i = Pill = [(f — P,
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and since ||zo|| = 1, we finally have

|lzo(f = Pl = |(f = P)Il.
Hence in accordance with Assumption 2

zo(g:) = 0. (M

Since ||z;||g+ = 1, it follows from (6) that

27|z (D:)|?

|zi(f — P —tuD3)| > laa(f + (1 — t1)gs — Pi — 0 Di))| + T (6")
forl > 1.
Now we temporarily write
a==z(f - P —tD;),
b=(1-t))zi(g:),
2t2|z;(D;)|?
L mmDIP
I f - Bl
Using this notation, the inequality (6") may be rewritten in the form
la| > |a + 8] + s,
which implies |a| > |a + b|. Consequently,
la|? > |a + B + 2|a + bls > |a + b + 2|als.
Thus,
la|? + |b]* + 2Redd < |la|? — 2|als,
and
2Reab < —|b|% — 2|als. (8)

Now we substitute the values of a, b, s in (8) and obtain

2Rexz;(f — Pi — tiDi)ai(g:)(1 — 1)
82|z (Di)[?

< =(1 = tP|ou(g0)? = dlou(f ~ P =~ D) T

Since t; — +0, a(f — P; — ttD;) — ||f — Pil|, when I — oo, there exists
number [y such that inequalities
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2Rezi(f — P)xi(gi)
4#2|zi(f — Pi — .Dy) ||z (D;)[?
A -=t)lf - Bl

< —(1 = t))|z1(g:)|® + 2t:Rex (Dy)zi(g:) —
< —lxl—(g")lj + 2t;Rex;(D;)zi(g:) — 2t |z (Dy)|?

1
= “5[551(.%') +2z(D;))* < 0

are valid for all > ly. Therefore,
Reml(f - Pi)wl(gi) < 0, Vi > lo.
But taking into consideration (7}, we see that this inequality contradicts As-
sumption 2, so (5) is proven.
Since E;(0) = E;(0) = E;(0), (5) implies
Ej(+0)| < Ei(+0) < E(f) - E:. (4)
Therefore, in accordance with (2),

Ey(r;) = min{||f — P, —tD;|,0<t <1} < E; and 7 > 0.

So
Eiy1 < E;.

Hence the sequence {E;}32, converges to some value E, > E(f), i.e.,
lim E; = E,. (9)
From (2), (4') and convexity of E;(¢), it follows that

E,; d E,’(Ti) A

Ei+1 < Ei — t; < E,' - C(Ei - E,;(Ti)).

Ti

Consequently,

AE,' = Ei+1 —_ E,‘ 2 C(E,' - Ei('ri)).
Since AE; — 0, also E; — E’i('ri) — 0, and
lim E;(7;) = lim E; = E,. 9)

To complete the proof we must show that

E, = E(f).
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Suppose that this statement isn’t valid, i.e.,
E. > E(f). (10)

Since the subspace Py, is finite-dimensional and Assumptions 1 and 3 hold, the
subsequence {P;, } = {Px} may be chosen so that the following limits exist:

i) lim P, = P,;

ii) lim g;, = gu;

ii) lim o, = o,

iv) lim7, = 7.
From Assumption 3 it follows that also

lim D;, = D,
exists, and
hm|f - Py —tDy || = ||f — P. — tD.| (11)

uniformly for ¢ € [0,1]. Equalities (9) and (9’) imply that at least one of
following statements
o, = limag, = 0; (12)

or

T =lim7g, =0 (13)

is valid.

Using the assumption (10) and the scheme of the algorithm, we construct
the auxiliary element § # 0 for the approximation P,. Due to Assumption 1,
we have

9« =G

For the following two convex functions

E() =|f+ 1 -t)g = P(f + (1= t)g.)ll;
E.(t) = |If - P. - tD.|,

where
_ dP(f+ (1 -t)g.)
D* - di |t=+07

analogously to (4’), we obtain inequalities

E.(+0) = EL(+0) < E(f) - E. <0 (14)
and 7 > 0, where 7 is a minimal value of ¢, for which

E,(7) = min{E,(t), 0 <t <1}.
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From (11), it follows that 7. = 7 and therefore (13) is impossible. So (12) is
true. But (14) implies that there is an integer ko such, that for every k, k > ko,

the inequality
B(f) - E.

2 <0

o;, <
is valid, and therefore
o, < 0.

This inequality contradicts (12). Hence assumption (10) is invalid. The theo-
rem is proven. O

§3. Applications

As was mentioned above, the proposed algorithm may be considered as
a wide generalization of the classical Remez algorithm. Applied to polyno-
mial approximations of complex-valued functions, the method generates an
algorithm which possesses in general a linear convergence as numerical exper-
iments show (see also [6]). For finite sets, the convergence of the algorithm is
quadratical.

When applied to real polynomial approximations, the method generates
exactly the Remez algorithm [7]. But even in this case an approach which
uses differential properties of the best approximation operator allows better
estimations of convergence.

Theorem 2. ([7]). Let Py, be a n-dimensional Chebyshev subspace in Cla, b],
and let AZ(u,z) be the second difference of the function u at the point x with
step h. If the function f € C[a,b]\Py, has the best approximation P(f) € Py
such that the difference f — P(f) possesses exactly n + 1 extremal points
Zg,T1,...,Z, and the inequality

|A%(f —-P(f),z;)| = vh?, v =const, j=0,1,...,n

holds in points z;, then the Remez algorithm for f converges quadratically.

In [7] a modified Remez algorithm for twice continuously differentiable
functions is proposed. A procedure for extremal points calculation, using
differential properties, is developed to reduce the complexity of the most com-
plicated part of the Remez algorithm.

This method may be applied to the best polynomial L,— approximation.
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