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Multi-Level Approximation to Scattered
Data Using Inverse Multiquadrics

S. J. Hales and J. Levesley

Abstract. A method of finding local approximations is used to thin
data before a hierarchical iterative refinement scheme is employed in con-
junction with domain decomposition. The interpolation problem on each
sub-domain is solved by using the same stored inverse. The approxima-
tion power of the inverse multiquadric is exploited whilst overcoming the
computational difficulties associated with globally supported basis func-
tions.

§1. Introduction

Radial basis functions have been widely used for multivariate interpolation of
scattered data, see [4] for a summary. An interpolant is generated by a linear
combination of basis functions € at distinct centres xi, i = 1,... , N;

N

s(x) = ZAiN(Ix - xiil), (1)
i=i

constrained by s(xi) = fi , i = 1,...,N, where F: Rd ý-* R and fi
.F(xi). The interpolation matrix A E RN x RN is given by AI<i•,JN =

0(i1xi - xjii), and A satisfies

AA = f, (2)

where A = [AI...•AN]' and f = "[f... fN]T.
Common choices for 4 in this setting are given in [61,

0(lIx - xill) = exp(-c 2lix - xl12), Gaussian,
P(llx - Xill) = (c2 + lix - Xi,12)-1/2, Inverse multiquadric,

where c is a constant shape parameter. With a small modification to the
scheme, the thin plate spline and multiquadric are also used.
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The above parameter-dependent functions are good at approximating
data for certain values of c, but these cause inherent ill-conditioning in A.
Schaback [7] explains this phenomenon by means of an "Uncertainty Relation"
between upper bounds on errors for interpolants of the form (1), and lower
bounds on the smallest eigenvalue of A. Iterative techniques for solving such
badly conditioned systems often suffer from poor rates of convergence, and
therefore computationally expensive direct methods have to be employed.

In the inverse multiquadric case, large values of c achieve good initial ap-
proximations to smooth data, whilst smaller values produce functions capable
of resolving fine detail. Ideally, such properties could be exploited without
having to solve (2) directly.

Since s is evaluated at points y 0 xi where an approximation is required,
a global solution incorporating all N centres may be inappropriate. Further,
it is unnecessary to find A such that I1f - A)1.OO <« .F(y) - s(y)j, since the
accuracy of s(y) is limited by the approximating power of 0. Rather than
searching for a complete global solution, this suggests that attention may be
focussed on small regions around evaluation points. Moreover, the aim is
to obtain a solution such that the residual and approximation accuracy are
comparable, for little is to be gained by having a small residual, while the
approximation power of the basis functions limits the final accuracy.

In Section 2, local approximations are used to convert irregular data to
a regular mesh of approximate function values. Whilst the method can be
generalised to Rd, the description and examples are given in ]R2 . The system
of equations associated with the gridded data is inverted and used to solve
subsequent systems.

Floater & Iske [1] demonstrate the benefits of a multi-level approach
to approximation, and the theoretical foundation is provided by Narcowich,
Schaback & Ward [5]. Section 3 describes the present hierarchical iterative
refinement algorithm, and explains the computational advantages of domain
decomposition and the use of a stored inverse.

§2. Local Solutions and Gridding Data

If the function YF is not arbitrary, but arises from a physical system, then some
degree of smoothness can be assumed. A smooth data set can be significantly
thinned whilst retaining general information about its behaviour. Floater &
Iske [1] demonstrate that Delaunay triangulation can be used to optimise the
uniformity of data, and provide a good thinning algorithm. Such triangulation
and assembling of data is computationally expensive for excessively large N.
An O(N) method of finding uniform approximate data is presented.

An approximation to .- at a point y E Rd is achieved by solving a small
interpolation problem centred on y. The closest q points in X to y are inter-
polated by inverse multiquadrics with shape parameter Clocal, and evaluated
at y. Since q can be as low as 20 - 30, ctoc0 can be relatively large be-
fore the matrix ill-conditioning becomes unacceptable, thus yielding a good
approximation.
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This method is highly parallelizable, and large data-sets can be dealt
with without the need of assembling or storing the matrix A.

Finding the optimum shape parameter on regular or scattered data re-
mains an open problem, as shown in [3]. There is no obvious correlation
between point spacing and a good choice of clocal. The best shape parameter
is generally found by increasing the value of clocal until just prior to machine
precision breakdown.

Let Y = {Yi,... y; n2 be the set of points on the n x n regular unit grid.
If the previous local approximation technique is applied to each yi, then the
irregular data can be transformed to a regular grid with approximate function
values fi. The aim is to find a global approximation using the new data at
the grid points.

After converting scattered data to a regular grid, certain approximation
techniques become available which would otherwise have been difficult to im-
plement. Polynomial tensor product splines can be efficiently employed to
approximate a solution from the given gridded data. To find such an approxi-
mation at a point z, z must lie inside a (d + 1) x (d + 1) subgrid of the regular
points, where d is the degree of the Lagrange polynomials to be used. Let
the points of such a subgrid be labelled 4ij and have function values fij for
i,j = 1,... , d + 1. The univariate Lagrange polynomials Li (x) and LV (y) are
constructed such that

Li(Go) = 6z and LV(G.k) = '.

The polynomial tensor product spline bij is defined to be

¢ij1(z) = Lt(z) • Lj(z).

The approximation at z is given by

d+1 d+1

ilj=l

Alternatively, a thinned global interpolant of the form (1) can be achieved by
solving

By=f, (3)

where B•<ij,:• = ( -Y1II) -1,- = [. ... "",]T and f--- [A...•]T.
This amounts to finding an interpolant § to a thinned approximation of

the initial data. The local approximation errors If(yi) - f(yi) limit the final
accuracy of A.

The inverse of B need only be computed once, and then stored for future
use. All scattered data problems can then be scaled and transformed to the
regular grid Y, whereupon p is given by the matrix-vector product pL = B- 1 f.
Only half of the entries of B- 1 need to be stored since B- 1 = (B-

1
)T.
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Fig. 1. An example of approximation vs. residual.

Too large a matrix B causes storage problems, and difficulties in calculat-
ing the inverse. As c increases, the approximation improves, but the residual
Ili - BpIIo grows. A value for c is chosen before the approximation begins to
deteriorate due to the rise in the residual. As an example, the function F -- 1
is approximated on the unit square using inverse multiquadrics by interpolat-
ing fi = .TF(yi), i = 1, ... ,400 using (3). The approximation is evaluated at
1000 random points. The results in Figure 1 are typical for smooth functions,
but the consequent choice of c is only a guide, and does not guarantee success
for all F.

§3. Hierarchical Iterative Refinement

The hierarchical method uses increasingly dense subsets of X to refine the
current approximation; see [5]. Let Xk = {gi,.-.,xNk} C X, such that
Nk+j > Nk. Let sk be the current approximation, and rk be the full global
residual at the kih level,

rk(xi) = f(xi) - Sk(Xi).

Let rk be the kth residual over the points in Xk. This thinned global
residual is interpolated by

Nk

tk(X) = -- Yick(Ilx - II), (4)
i=1

where Ok(IIX-Xill) k (I /2 , and tk(&i) = rk(1.) , = Nk.

The initial interpolant s, _ 0 is updated by

Sk+1 = Sk + tk. (5)
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The technique of gridding data in Section 2 is used to find an approximate
function value for every point in Yp. Therefore, (5) is replaced by sk+1 =

sk + tk, where hk is the current approximation to regular approximate data,
91=0.

The value cl can be relatively large to give a good initial approximation.
As Nk increases, Ck has to be reduced to ensure computational solvability. The
decrease in Ck introduces tighter basis functions which improve the resolution
of the approximation.

A method of data thinning is required to determine the points in Xk. The
dense systems arising from (4) have to be solved directly, but this is imprac-
tical for large Nk. To overcome such complications, domain decomposition is
applied to each Xk.

The levels of the hierarchy have to be computed sequentially, but by
using domain decomposition each sub-domain can be dealt with in parallel.
Moreover, each such solution only requires a single matrix-vector product.

To put this in the current context, each Xk is constructed from overlapping
square grids Yp , where p = 1,... ,Mk. These square grids need not be the
same size or of similar orientation, but must contain an equal number of points.
Each sub-domain Yp consists of an inner region, where the approximation is
finally evaluated, and an overlap. Special attention has to be given to sub-
domains whose edges coincide with the boundary of X.

At the kth level, mk sub-domain interpolation problems need to be solved.
Since B is invariant under shifts and rotations of the centres yi, the stored
B-1 can be invoked. If the centres are scaled yj F-+ ayi, this amounts to a
change in the shape parameter.

Recall that Bl<i,j<_n = O(llYi - yjl), where y. E [0,1] x [0, 1]. Now,

001y - yill) = (c2 + I1Y - ydl1)-112

= a (Cc2 + llay - ay~I 2)-1/ 2 .

Let wi = aYi and define V)(11w - will) = a(a2 c2 + 11W - W112)-1/2. Then
BI<i~j<• = ¢(lYi-yjll) = O(Ijwi-wjII) where wi E [0,aj]x[0,a]. Therefore
by using the matrix B, a new inverse multiquadric is created at scaled points
with shape parameter ac.

Each of the thinned global interpolation problems (4) can be decomposed
and solved by multiple applications of the stored inverse B-1. Continued use
of the same inverse naturally introduces tighter basis functions suitable for
approximating typical residuals.

§4. Numerical Results

We give an example where the above scheme is used to approximate Franke's
function [2] over 10000 scattered points in the unit square in R2 :

.T(u, v) = 0.75e-0'25(9u-2)
2
-0'25(9v-2)

2 + 0.75e-(9u-2)
2
/49-(9v-2)2/lO

+ 0.5e-o.25(9u-7)
2 -0.25(9v-3)

2 - 0.2e-(9u-4)2-(9v-7)
2 .
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No. of Shape Max. error in Max. error in

Level domains parameter Overlap gridded data solution

mk Ck 11A - Afill. 11F- I.oo

1 1 0.25 0 8.241 x 10-5 1.371 x 10-4

2 4 0.138 1/36 2.424 x 10- 6  1.838 x 10-5

3 16 0.0688 1/72 3.189 x 10-6 3.189 x 10-6

Tab. 1. Error for Franke's function.

The localised interpolation problems are solved directly using Gauss Elim-
ination, with q = 20 and clocai = 0.2. It is the error function at each level
which is approximated locally, and not the original function F. The square
sub-domain grids Yp are comprised of 21 x 21 equally spaced points. For ease
of implementation, the sub-domains used for a particular level are of equal
size. The overlaps between sub-domains therefore consist of one or two mesh
points, depending on position. The key interpolation matrix B is constructed
from inverse multiquadrics with y, E [0, 1]2, c = 0.25, and B 1 is generated us-
ing Matlab. The domain decomposition is straightforward on the unit square
with mk - 4 k-1. The thinned global interpolants hk are evaluated at points
ti E [0, 112. Table 1 shows the error in the approximated data at the regular
grid points If(yi) - f(yj)l, and the error in the approximation I.F(ti) - 4k(ti)l.

Figures 2 and 3 show the approximation error for each level.

The error function from Level 1 clearly demonstrates the ability of the in-
verse multiquadric to approximate smooth data. The error near the boundary
is scaled by an order of magnitude at each level, but has the same general be-
haviour. The final iteration leaves error near the boundary, aggravated by test
points being outside the original scattered data set. Such evaluation points
ought to be included since, although they require the extrapolation of 9k to
evaluate, the experiment was specified to be conducted on the unit square.
The original aim of finding a solution where the residual is comparable to the
approximation accuracy is fulfilled at Level 3.

Example I is repeated as far as the regularization of data, and then poly-
nomial tensor product splines are used to find the final approximation, as
described in Section 2. Such splines cannot replace the inverse multiquadric
approximation on the regular grid without an increase in error. Such an er-
ror is then propagated to the next level where the discrepancy is amplified.
However, if the hierarchical refinement procedure is abandoned, then these
basis functions efficiently yield a good approximation. Table 2 shows the
approximation accuracy for such splines of different polynomial degree with-
out iterative refinement. The grid sizes are comparable to those used in the
original example.
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Grid Size Linear Quadratic Cubic

21 x 21 2.2 x 10-2 6.4 x 10-3 3.5 x 10- 3

41 x 41 5.3 x 10-3 9 x 10-4 2.6 x 10-4

81 x 81 1.4 x 10-3 1 x 10-4 5.7 x 10-5

Tab. 2. Approximation error for the various splines.

Fig. 2. Approximation Error for Levels 1 and 2.

Fig. 3. Approximation Error for Level 3.

§5. Conclusion

A global solution to an interpolation problem involving a large number of
data points is too expensive to compute directly if inverse multiquadrics are
to be used effectively. However, if the aim is to generate approximations to a
function, then such a solution is unnecessary, and an alternative method has
been presented.

The underlying idea is to transform given scattered data fi at points xi to
regular approximate data fA at Yi, which is easier to solve for. The aim is then
no longer to interpolate the initial data, but to find a good approximation to
it. The final solution .i is an approximation to f, which is close to f. Success
relies on minimising the local approximation errors If(y) - f(y) .

The algorithm is O(N) since the only work related to the number of initial
points is the search for the q closest points to each yi. Such a search can be
improved by making assumptions as to which xi are unlikely to qualify.
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The time required to solve each sub-domain problem is reduced due to
the use of the stored n x n key inverse matrix. Solving directly would be
0(n 3 ), but the required matrix-vector product is O(n2 ).

The hierarchical iterative refinement strategy produces good approxima-
tions, and is the only sequential aspect of the method. The search for ap-
proximate regular data, and the solutions for each decomposed sub-domain
are parallelizable operations, although this has yet to be implemented. These
features mean that large data sets can be dealt with in acceptable computing
time.
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