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Smooth Irregular Mesh Interpolation

Stefanie Hahmann, Georges-Pierre Bonneau,
and Riadh Taleb

Abstract. The construction of a smooth surface from an irregular mesh
in space is considered. The mesh vertices can either be interpolated or
approximated as a control net. A collection of triangular B6zier patches
results from a local, affine invariant and visually smooth interpolation
scheme that can represent surfaces of arbitrary topological type. It is
based on a domain 4-split. Beside the surface construction scheme, the
optimal employment of the numerous degrees of freedom is crucial for an
overall pleasing shape. Different local minimum norm criteria are tested
to see if they produce satisfactory shapes.

§1. Introduction

The general problem of constructing a parametric triangular G1 continuous
surface interpolating an irregular mesh in space has been considered by many
authors. In [5] a survey of such schemes is given, and it is concluded that
local polynomial interpolants have similar shape defects due to the absence of
an optimization strategy for using the free parameters (a special solution has
been proposed in [6] for one of these schemes).

A different method has been developed by Loop [4] producing a collec-
tion of patches that meet each other with G1 continuity. The vertex enclo-
sure problem, which occurs when joining with G1 continuity an even number
of polynomial patches around a vertex, is solved by first constructing C 2-
consistent boundary curves and cross-boundary tangents and then filling in
the patches. In one-to-one correspondence to the mesh faces, sextic triangular
B6zier patches are constructed, which lead to a very small number of degrees
of freedom. One scalar value per vertex controls the length of the tangents
of the boundary curves at the end points and one control point per patch is
free. This is not enough for sufficient control of the shape of a sextic patch. In
[5], it was stated that well-shaped boundary curves are a necessary condition.
Loop's scheme doesn't provide any influence on the second derivatives of the
boundary curves, which can lead to undulations. It was therefore proposed to
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relax the interpolation condition, which leads to an extra free parameter per
vertex controlling the distance from the patch vertices to their corresponding
mesh vertices. This is clearly improving the shape.

Recently, another triangular interpolation scheme has been developed
[3]. A regular domain 4-split leads to the construction of four quintic B1zier
patches which form a macro-patch in one-to-one correspondence to a mesh face.
They have one polynomial degree less than Loop's scheme, but one degree
more than Piper's or Shirman-S6quin's method [8,9]. The domain 4-split is
a new approach in triangular mesh interpolation, and has several obvious
advantages: the boundary curves and cross-boundary tangents are piecewise
polynomial. They can therefore be of low degree and simultaneously separate
first and second derivatives of the boundary curves of the macro-patch corners
from the neighbours. The scheme is completely local. Furthermore, the 4-split
leads to four patches per macro-patch which leaves enough control points free
for inner shape control. Finally this scheme offers two parameters per vertex
for controlling first and second derivatives of the boundary curves, and six
free control points inside the macro-patch. Additionally, the interpolation
condition can also be relaxed to gain one more free parameter per vertex.

The present paper investigates the problem of how the free parameters
and control points of the 4-split domain method can be employed optimally.
The challenge is to get an overall satisfactory shape, which is a global re-
quirement, while maintaining the locality property of the scheme. Various
geometric and variational criteria are proposed and compared.

§2. Triangular G 1 Interpolation by 4-splitting Domain Triangles

2.1 Notations

The surface mesh M is input, and consists of a list of vertices and edges de-
scribing a 2-manifold triangulated mesh in R3 . The surface S which interpo-
lates the vertices of M is composed of triangular macro-patches Mi which are
in one-to-one correspondence with the mesh facets. It is therefore convenient
for the construction of S to choose a parameterization of the macro-patches
M' around a common vertex, sharing pairwise a common boundary as illus-
trated in Fig. 1. All subscripts i = 1,...,n are taken modulo n, where n is
the order of the mesh vertex corresponding to Mi(O, 0). The parameter ui lies
in the interval [0, 1].

The fundamental idea of the present triangular interpolation scheme is to
subdivide the domain triangle into four subtriangles by joining the edge mid-
points together, see Fig. 1. Each macro-patch Mi will therefore be a piecewise
polynomial image of the unit triangle in 12, composed of four quintic B6zier
triangles [2] each. The macro-patches will join together with G1 continuity.
The resulting surface S will also be G1 .

The G1 conditions which are used in this paper are subject to some simpli-
fying assumption in order to keep the interpolation scheme of low degree. Two
adjacent patches Mi-l(uil,, ui) and Mi(ui, Ui+l) join at a common boundary
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Fig. 1. Parameterization and domain 4-split.

with G1 continuity if there exists a scalar function (Di such that

1 M - 1 M -:•O u1 ' 1
Di(ui) M•,(ui, 0) = -Ml,+(ui,O) + 1 O

where n is the order of the vertex corresponding to ui = 0. Miu. denotes thepartial derivative of M4 with respect to ui.

The algorithm for constructing the spline surface consists of three steps

"* constructing boundary curves,

"* constructing cross-boundary tangents,

"* filling in the patches,

which will be briefly presented in the following three subsections. For more
details and complete explanations of this method, the reader is referred to [3].

It is important to keep all these functions of the lowest degree possible.
The main contribution to this comes from the domain 4-split. It allows for
piecewise polynomial functions of low degree while simultaneously fulfilling all
other requirements, such as continuity and localness.

2.2. Boundary curves and vertex consistency

First the boundary curves of the macro-patches are constructed in correspon-
dence to the edges of M by interpolating the mesh vertices at the end points
by satisfying the G1 conditions at the vertices and by keeping the surface
scheme local. They are called C2-consistent.

Each boundary curve between two adjacent patches is a piecewise (2
pieces) cubic B1zier curve parameterized on {0, ½, 1}. Around each vertex of
M, the control points b0, bM, bM, i = 1, ... , n, of all incident boundary curves
are constructed independently from the joining curve piece of the opposite ver-
tices. The "midpoints" bM are then constructed in order to have C1 boundary
curves. See Fig. 2 for the notation.
At a vertex v the Di-functions which are defined on the incident edges to
v are first determined by calculating I)i(0) and I)i(1) from system (1) by
solving it for ui = 0 and ui = 1 resp., which gives 4i° = (O) = cos(•L)
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b3
PW

cos •(1 - 2uV) + ui, for ui E [0, ½],•(ub) = 

(2)

Let us now adopt a matrix notation for the boundary curve control points

between v and Pi, i = 1,...,n

tIb , b b: , b t: b1, p: ., :

The [II)=I-csý') Tedmi -pi o nalst eeaevre

whereia is referred to as the vertex neighborhood of v.Le following choice for the boundary curve Bczier points near the vertex
v enables us to find a solution to system (1) which at the same time solvesthe vertex consistency problem [3,4]:

bo = cb, + B0 ,b- a= b B1
2, 

(3)12 
--bo = [(vo + B015,+-]•+Bp

where B°, B1, B2 are n x n matrices defined as

1-a + +3cos( n )BY =

Z3 n
(-yo + -yg)(l - a) + 710cos( 2 ') r1/6 if j=i-1,i+1,

B? =( + 'Y2 1/3 if j =i,
1n 0 otherwise.

(4)
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The free parameters a, 03, 71,72 control the interpolation and the first and
second derivatives. In Section 3 it will be shown how they can be set optimally.
The control points of the joining curves pieces b0, b1, b2 and bk = are found
by applying the formulas (3) and (4) to the neighbouring mesh points pi of v.
k is the index of v relative to the neighborhood of v.

This curve network construction is local in that changes of one mesh
vertex only affect the boundary curve pieces relative to the neighbourhood of
that vertex.

2.3. Cross-boundary tangents

The cross-boundary tangents are subject to the G 1 conditions (1), the vertex
consistency constraints, and the curve network of Sect. 2.2, and are set to be
equal

MU,i+I(ui, 0) = 4)i(ui)MU, (ui, 0) + 1Pi(ui)Vi(ui), 5

M'-,_, (0, ui) = 1i(ui)M•, (ui, ) - Ti(ui)Vi(ui).

The scalar function Ti and the vector function Vi are built of minimal degree
so as to interpolate the values of the cross-derivatives and the twists at the
vertices p and pi:

li(ui) = sin 2-r(1 - ui) + sin 21rui, (linear)
n ni

n 1 (6)
Vy(ui) = v•v B (2u) ui E [0, , (piecewise quadratic)

k=1

where 1 1
O =VYp, i= ;V 1 p, V2 =2 1 + 2 ;V . (7)

The n x n matrices V° and V 1 are given by

V° -60 sin (2r(j- ), i,j=,...,n,
n 

nf

i. 1 [(601 - 4800 + 2400) tan(") - 61] sin(2 (8)
V = i=+1

4 01 if j=i+l,

+ ý-(€ -1 ifyj=i-1,

where V = Di(0), D1 = V(0) and T 1 = V (0) are known from (2) and (6).

2.4. Filling-in the macro-patches

Each macro-patch is composed of four C' quintic triangular B6zier patches.
The boundary curves of the macro-patch are the twice degree elevated curves
of Section 2.2. The cross-boundary tangents of Sect. 2.3 determine the first
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Fig. 5. Four steps for filling in the macro-patch M with Cl-continuity.

inner row of control points after one degree elevation [3]. The remaining
15 inner control points, which are highlighted in Fig. 5a, are now computed
by joining the four inner patches with C1 continuity. The necessary and
sufficient Cl-continuity conditions between two internal B16zier patches inside
one macro-patch are shown in Fig. 3: all pairs of adjacent triangles must form
a parallelogram. In [3] it was shown that the first and last pairs of adjacent
triangles in Fig. 3 already form parallelograms.
It remains to compute the free B1zier points such that the other three pairs
of triangles along each edge inside the macro-patch also form parallelograms.
This is done in four steps:

"* choose the three twists points of the internal Bdzier patch arbitrarily;
these are free shape parameters (see Fig. 5a),

"* compute the third and fourth Bdzier points along each internal curve
joining two B1zier patches using the second and fourth parallelogram
conditions (see Fig. 5b),

"* choose the remaining three unknown B6zier points of the central patch
arbitrarily; these are free shape parameters (see Fig. 5c),

"* compute the three remaining unknown B1zier points of the outer patches
using the third parallelogram condition along each edge (see Fig. 5d).

§3. Local Optimization of the Boundary Curves

The present triangular interpolation method offers several degrees of freedom
for shape control. They can be set manually or by using simple heuristics. An
interactive design system can allow for manually adjusting these parameters
in order to improve the shape. This procedure seems not to be sufficient if the
given triangulated point set is very large, or if the data points are irregularly
distributed.

Our goal is to investigate some optimization techniques. Two groups of
degrees of freedom have to be distinguished. First there are 4 scalar parame-
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ters per vertex controlling the curve network, then 6 free inner B~zier control
points are available for each macro-patch. Let us first concentrate on the curve
network. It was stated in [5] that triangular interpolants often suffer from un-
dulating curve networks. It can be confirmed here that a "well shaped" curve
network is not sufficient, but is necessary for the construction of a pleasing
shape. As pointed out in Sect. 2, the 4-split method is local. This property
should not be altered by an optimization procedure. Local optimization cri-
teria are therefore needed. This localness requirement conflicts in some sense
with the global requirement of a "well shaped" surface. Every local scheme has
to accept this conflict, otherwise it loses its localness property. Nevertheless,
it will be shown that good results can be obtained.

In detail, four curve parameters per vertex are available, see (3) and
(4). a is not really free. It allows us to switch between interpolation and
approximation of the surface mesh. At first, we only consider the interpolation
problem and set a = 1.0. /3 affects the length of the tangent vectors of the
boundary curves at the vertex v = bW. The control points b, are obtained by
a first order Fourier approximation of the neighbourhood pi, i = 1, ... , n of v.
In other words, the b' are an affine image of a regular n-gon whose centroid is
b0. Too short tangent vectors lead to sharp corners at the patch vertices, while
too long tangent vectors can lead to unwanted undulations. 71, Y2 control the
second derivatives of the vertices. The control points b' depend linearly on
them. But they don't depend linearly on/3, 71,72.

Due to the previous observations, the optimization of 0, 71, 72 should
mainly avoid undulations and allow for more or less bent or stretched curves.
If for computation-time reasons one wants to perform only linear optimization
in a least-squares sense, as we do, it should be done in two steps separating /3
from 71, 72.

In the following, the computation of optimal /3, 'yi, y2 is separated into
-two steps. Otherwise, the problem would become non-linear. Each boundary
curve consists of two cubic pieces joining with C1 continuity. For locality
reasons of the whole scheme, the pieces have to be constructed independently
one another. In a first step the points bl of the boundary curves incident in
v, Fig. 2, are determined. Each boundary curve corresponds to an edge of
the surface mesh. In this case we are looking at the edge connecting v and
pi. In order to reproduce the shape inherent to the underlying surface mesh,
geometrical considerations imply that b' would optimally lie in the plane
spanned by this edge and a vector between v0 and the orthogonal projection
of pi on the tangent plane in b', as Piper does in [8]. We call these points

b* = [bl*,...,b n*]T. The tangent planes should be estimated first. The
constraints on the boundary curves in the present method don't allow for
setting b, equal b6, this is why these points are approximated in a least-
squares sense. The key point here is that the locality of the equations (3)
and (7) enables us to replace the true neighbourhood points pi of v in these
equations by new "virtual" neighbourhood points p* that are only used in
these equations, i.e. to compute the boundary curves, and the cross-boundary
tangents. Therefore, we are able to solve the following linear least-square
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problem in order to compute the "virtual" points p*:

SIbl* - býI12 -- min. (9)

The new, optimal, control points are now given by
boptim alB I .

i = aima + B (10)

In a second step, b2 has to be determined. 15 := p* and 0 are already fixed.
Two parameters per vertex, y1,,y2 are left free for optimization. b3 is then
fixed as the midpoint between b' of the two curve pieces. The requirements
on b2 are twofold: avoid undulations and bend the curve on request. The
second requirement concerns the whole boundary curve between v and pi,
and depends on the choice of b2 . The idea is to cope with that problem by
introducing a target point t for each boundary curve. The control points bi of

each curve piece are then determined so that b3 = 1(b' + b2) approaches the
target point by minimizing an appropriate energy functional on each curve
piece locally. The introduction of the target point allows for global control of
the boundary curves, while still keeping the scheme local.

The target point is fixed by a subdivision rule in terms of b0, b, and bo b1
of the joining curve piece, such as

t = I(-b0 +- 9b' + 96'j - bo). (1

b2 , which depends linearly on the free parameters Y1,WY2, is now determined
by minimizing the linearized version of the bending energy combined with a
curve length component [1]1 10

E. = IIX"(t)H12dt + w IIX'(t)II 2dt , w > O. (12)

The solution of a linear 2 x 2 system gives the optimal values for Yi, -Y2 for b2.
Different ways for finding an optimal, i.e. well shaped, curve network

have been studied. Within the local schemes, the concept of target points
can be replaced by target tangent vectors. This leads to a 2n x 2n linear
system of equations per vertex. 0, 71,'Y2 can also be determined by a non-
linear optimization method in only one step. When relaxing the localness
requirement of the scheme, plenty of curve network schemes are possible, like
a variant of Nielson's MNN [7] or the integration of given curvature values or
second fundamental forms at the mesh vertices in the optimization process.
This is not a subject of the present paper.

§4. Minimum Norm Criteria for Macro-patches

Once the curve network and the cross-boundary tangents are constructed, 15
inner B1zier control points remain for each macro-patch. They are related to
each other by the C 1 continuity conditions which are imposed between the
four quintic sub-patches. Six of them are completely free. They are drawn as
full black dots in Figs. 5a and 5b. The remaining 9 points depend linearly on
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Fig. 6. Left: manually fixed free parameters, Middle: optimized boundary curves,
Right: optimized boundary curves and patches.

them. It is therefore possible to use one of the two quadratic functionals
Ek(X,X), where k = 2,3 and

Ek (X,)= (kx O ky OkX Oky OkX Oky

The free points ý are determined by minimizing

3 3

ZEk(S3,Si)=Z(Mjý+aj)TA(Mjý+aj), k=2,3, (13)
j=O j=O

where Sj = E1i1=5 b1Bj5(u, v, w) denote the four quintic Bdzier sub-patches,

a [113 , S 1 ,31 311 , S122, 8212, S 21]t denotes the vector of the 6 unknown
control points of the middle patch (see Figs. 4 and 3). The (21 x 6) matrices
Mi and the vectors aj contain the linear relations between control points of
the 4 sub-patches and the 6 unknown points. The (21 x 21) matrix A is given
by A1 -= Ek(Bi, Bi) for I~l = 5, 111=5.

§5. Results

Fig. 6 shows the interpolation of a tetrahedron by our method. This very
simple example was chosen because it illustrates clearly the influence of the
free parameters and control points. The upper row shows three surfaces with
the boundary curves of the macro-patches, while the lower row shows their
iso-parametric lines. The left surface is obtained by manually setting a = 1.0,

,3 = 0.15, yo = -1.0, -yj = 2.0, "Y2 = 0.0. These values are identical for all
vertices due to the regularity of the surface mesh. The free inner control points
are set by a rule combining the mesh face normal, cross-boundary tangents
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and the boundary curves. The middle surface has optimized boundary curves,
(9)-(12). Optimal "virtual" neighbour points are calculated, and the optimal
parameters are 0yo = -1.598, -yi = 2.393, y2 = 0.205. Face energy without
minimization is equal to 732.2. The right surface has the same boundary
curves as the previous example, but the free inner control points of the macro-
patches are obtained by minimizing the face energy (13) with k = 3. The
energy decreases to 309.0. The connections between the macro-patches are
sharper for the manual setting. An overall more smooth surface results from
the optimized parameter setting of this paper. The distribution of the iso-
parametric lines shows a positive side-effect: it is more regular at the patch
vertices for the optimized surfaces.
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