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Biorthogonal Refinable Spline Functions

Tim N. T. Goodman

Abstract. We give a construction for refinable spline functions of degree
n with compact support and simple knots in 412Z which are biorthogonal
to uniform B-splines of degree n with simple knots at 12Z.

§1. Introduction

A function is refi na ble if it is a linear combination of dilates of integer translates
of itself. Such functions are central to multiresolution methods, in particular
in the construction of wavelets. In general, refinable functions can be defined
implicitly from the refinement equation which they satisfy, but explicit con-
structions of refinable functions are restricted mainly to spline functions, i.e.
piecewise polynomials. If we require the natural condition that the integer
translates of the univariate refinable spline function 4 with compact support
form a Riesz basis, then 4 can only be a uniform B-spline with simple knots
[4]. However there is more flexibility if we replace the single function 0 by
a refinable vector of spline functions (01,..., 4,). For a survey on refinable
spline functions, see [2].

In multiresolution methods, orthogonality plays an important role. In [1],
constructions are given for refinable functions whose integer translates are
biorthogonal to a given refinable function 4, in particular when 4 is a uniform
B-spline with simple knots. However these dual functions are not defined
explicitly. We give, in Section 3, constructions for refinable spline functions
of compact support which are biorthogonal to uniform B-splines with simple
knots. This requires refinable vectors of three functions: the uniform B-splines
have knots in 42Z while the dual functions have the same degree and simple31

knots in !2Z. The construction is based on a general result in Section 2 giving
necessary and sufficient conditions for biorthogonality of certain vectors of
(not necessarily refinable) functions in terms of a Grammian matrix.
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§2. Biorthogonal Basic Sets

Let .1,...,¢r be compactly supported real-valued functions in L 2(]R). We
say {€l,... ,¢r} is a basic set for a space V if V comprises all real, finite,
linear combinations of integer translates of 01,..., Or.

We say basic sets {¢1,..., Or} and {lPi,... ,1,br} are biorthogonal (or the
basic set {¢1,... ,kr} is dual to {¢5 ,... ,¢r}) if

r_00 Ojj(. -k) = ijb0k, i,j =1,...,r, kE2.

A basic set {€i,. .. ,Or} is said to be stable if {(J(. ) i = 1,...C,r,j
2Z} forms a Riesz basis, i.e. for some A, B > 0,

AZ a?. ][ < _ ~,.j)]2 •B 2Z) - < E 1 aij~i(' j1 _< aBE E- aij

i=1 j=-oo - i=1 j=-00 1=1 j=-o0

for any aij E l, i =1,...,r, j E 2.
It is shown in [3] that {€.,-.. , r} is stable if and only if for each u in

R, there are integers kj, ... , k, with

det [ýji(u + 2kikj) ,, #0. (1)

We shall say a matrix M(z) = [M(z)i]=l of Laurent polynomials is
invertible if it has an inverse which is a matrix of Laurent polynomials, i.e.

detM(z)=az , somea50, lCZZ.

Lemma 1. If{¢1,... ,¢r} is a stable basic set for V, then {N1,... ,40 in V
also forms a stable basic set for V if and only if s = r and

Oi=• E Aij(k)oj(.-k), i=l,...,r, (2)
j=1 k=-oo

where the matrix of Laurent polynomials

A(z) := [ i Aij(k)Zk]r

Ik=-oo i,j=l

is invertible.

Before proving this lemma, it will be useful to introduce the following
vector notation. For a basic set {10,... ,- -4}, we let 0 denote the column
vector (q1,-.., er)T. Then we can write (2) as

00

E= c Ak(.- k), (3)
k=-oo
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where Ak is the matrix [A3j(k)],7j=1 . Taking Fourier transforms then gives

ý(u) = A(z)¢(u), (4)

where z = e-iu.
Proof of Lemma 1: Suppose that (2) holds, where A(z) is invertible. From
(4) we have

q(u) = A(z)-lb(u).

Since A(z)-1 is a matrix of Laurent polynomials, it follows that 4i,-.-,
are finite linear combinations of integer translates of '1, ... , ?P,. Since V
comprises all finite linear combinations of integer translates of Oi,.-, Or, it
follows that {10, . . . , ', } is a basic set for V.

Also for any u in R, we may choose integers kl,..., k, so that (1) holds,
and thus from (4),

det[bj(u + 2vrkj)],j=l = det A(z) det[qi(u + 2xrkj)]rj 1 : 0.

So {¢1,..-,r} is stable.
Conversely suppose that {¢1,...,. s} is a stable basic set for V. Then

there exist an s x r matrix A(z) and an r x s matrix B(z) of Laurent polyno-
mials such that for z = e-iU,

ý(u) = A(z)t(u)

and
q(u) = B(z)ý(u) = B(z)A(z)P(u).

For any u E JR we may choose integers kl,..., kr so that (1) holds. Since

[ýj (u + 2wkj)]r,j=l = B(z)A(z)k[i (u + 27rkj)]7, =1 ,

it follows that B(z)A(z) = Ir, the r x r identity matrix. Similarly ý(u) =

A(z)B(z)ý(u) and since {f, ..... ,1} is stable, we can deduce as above that
A(z)B(z) = I,. Thus s = r and A(z) is invertible. D

Theorem 2. Suppose that {j0,..., Or} and {0, ... , Or} are stable basic sets
for V and W respectively. For k E 2Z, i,j = 1,...,r, we define

Mij(k) := L oj(. - k), (5)

and let M denote the r x r matrix of Laurent polynomials given by

M(z) := E Mij(k)zk (6)

k=oI i,j=l
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Then there exist biorthogonal basic sets for V and W if and only if M is
invertible. Moreover in this case, for any stable basic set for V there is a
unique dual stable basic set for W.

Proof: Let {¢i,... ,¢} and IV),,.. . ,V), I be any stable basic sets for V and
W respectively. Then by Lemma 2.1 we have

00 00E= AkO(. - k), 1 = Bk'P(.- k), (7)
k=-oo k=-oo

where Ak, Bk are r x r matrices such that

00 
00

A(z) Z= A~z", B(z) B= Z B (8)
k=-oo k=-oo

are invertible.
For k c 2Z, i,j= 1,..., r, define

M ij(k) = 00i j (.- k), (9)

and let Mý1 denote the r x r matrix of Laurent polynomials given by

1it(z) := [Z ij(k)zk . (10)
k=-oo• " i,j=l

Then from (2.5)-(2.10) we have for z = e-iU,

M(z) = A(z)M(z)B(z)*, (11)

where B(z)* = B(z)T = B(z 1 )T.
Now by (2.9) and (2.10), € and 7 are biorthogonal if and only if M(z) = I.

If this holds, then by (11), M must be invertible. Conversely, if M is invertible,
then for any choice of A(z) we can define B(z) uniquely by

B(z) = (M(z)-'A(z)-')*

so that (11) holds with M(z) = I. Thus if M is invertible, then for any stable
basic set ¢ for V, there is a unique dual basic set ý for W. El

We remark that from the definition, any biorthogonal basic sets must
have linearly independent integer translates. Thus if M as in Theorem 2.1 is
invertible, any basic set for V or W which is stable must in fact have linearly
independent integer translates.

Now for m E 2Z, m > 2, we say a space V of functions on IR is m-refinable
if

f c v = f(-) C V.
M
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If 0 is a basic set for an m-refinable space V, then 0(m) is in V, and so

00T ekO(.-k)

for some finite set of matrices Ck. Thus, q satisfies the refinement equation

00

1:= Ckb(m.- k).
k=--o

In this paper we shall, for simplicity, consider only the case m = 2.

§3. Biorthogonal Refinable Splines

For any integer n > 1 we let Nn denote the uniform B-spline of degree n with
simple knots at 0, 1,... , n + 1. We now fix n, and define

Oi(x) = Nn(3x), 0 2 (X) = Nn(3x - 1), 03(X) = Nn(3x - 2).

Then {€1, 02, 03} is a stable basic set for the space V of all spline functions
of degree n with compact support and simple knots at 12Z. Clearly V is
refinable. We wish to find a refinable space W of spline functions of compact
support which has a basic set which is dual to {11, 02, 03}. From Theorem 2
we see that this is equivalent to finding a basic set {11, 02, 03} for W such
that the matrix M in (6) is invertible.

We shall choose

01(x) -= Nn(2x), 022(X) = Nn(2x - 1),

and 03 to be a spline function of degree n with knots in ¼Z and support in
2n - ¼]. Thus W is a space of spline functions of degree n and simple knots

in ¼ 2Z, which contains all spline functions of degree n with compact support
and simple knots in 12Z. For any function f in W, f(-) has knots in 12Z and
so lies in W. Thus W is refinable.

Theorem 3. We can choose V)3 as above so that there are biorthogonal basic
sets for V and W, or equivalently that there is a unique basic set for W dual
to the basic set {q1, ¢2, 03}"

Proof: The space W0 of spline functions of degree n with simple knots in ½2Z
and support in [0, 2n] has dimension 3n, while the space W 1 of spline functions
of degree n with simple knots in ¼7Z and support in [0, 2n] has dimension 7n.
Thus we may choose linearly independent functions fl,..., f4n in W1 with
support in [¼, 2n - ¼] which together with WO span W 1. We write

4n

0 3 = Zakfk.

k=1
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It remains to choose al,...,a4, so that M in (6) is invertible. Now
Mij(k) = 0 except in the following cases: M1 1(k), -IL < k < 3.

___2 . ...< k <5 --3-, M13(k), -2n + 1 < k < , R3" M21 (k), - < k < •=!3272 - - 3;
M22(k), _ •_+l < k < I" M23(k), -2n + 1 < k < n+'; M31 (k), _--I <k<2 -3 3 -

n+2. M32  < k < M33 (k), -2n + 1 < k < 2 Then
3 ' ;--2k 2 3 ' 3 "

detM(z)= 1 bkzk,
k=-3n+l

for some numbers bk, -3n + 1 < k < n, which are linear functions of
al,...,a4n. The condition det M(z) - 1 then gives 4n linear equations in
4n unknowns a,, ... , a 4, and we shall show that this system is non-singular.

Suppose, to the contrary, that the system is singular. Then we may
choose a,,... ,a 4n, not all zero, so that det M(z) 0= 0. Then the columns of
M are linearly dependent in the sense that there are Laurent polynomials pi,

P2, P3, not all zero, so that

3

E M(z)jjpj(z) = O, i = 1,2,3.
j=1

Writing
00

pj(z)= E cj(k)z', j=1,2,3,
k=-oo

this becomes

3 00 00

S Mij(k)zk E cj (l)z = 0, i = 1,2,3,
j=1 k=-oo 1=-oo

i.e. 3 oo

E E Mij(l)cj(k -1) = 0, i =1,2,3, k c 2Z,
j=l 1=-00

which on recalling (5) gives

"f i(.- k)f = 0 i=1,2,3, kE a,

where
3 00f = E E cj(-')Oj(. - I).

j=1 1=-0o

Thus f is orthogonal to V. Note that since the integer translates of

1, ¢'2, 03 are linearly independent, f is not identically zero. Since only a
finite number of coefficients cj(-l), j = 1,2,3, 1 E 2Z, are non-zero, f has
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compact support. Suppose that the support is [a, 3 + 2n], a, 13 E 2Z, but not
in [a + 1,,3 + 2n] or [a,3± + 2n - 1]. It is easily seen that a < 3 and

)3

f = cj'03(.-j) +9g,
j=a

where c, # 0 0 co and g has support in [a,13 + 2n] and lies in the space of
splines of degree n with knots in ½ZZ, which we shall denote by Z.

We first note that for some h, in Z with support in [03 A - 1,13 + 2n],

711 := c,)3(. -13) + hi

is orthogonal to those elements of V with support in [13 + 2n - 1, cc). Now

1 '-1
f - Y'Ck l( - j +,3

co j=a

is orthogonal to those elements of V with support in [13 + 2n - 2, cc) and on

this interval coincides with a function

272 := cOb 3(. -)3) + h2 ,

where h2 is in Z with support in [1 + A, - 2,13 + 2n]. Continuing in this way
we recursively construct

77i : = cO'3. - 0) +, hj, i =1, ... 4n,

which is orthogonal to those elements of V with support in [13 + 2n - j, cc),
where hj is in Z with support in [13 + - - j, 13 + 2n]. In particular, 774n has
support in [13 - !ý -,+3 + 2n] and is orthogonal to those elements of V with
support in [13 - 2n, cx).

Choose F with F('+l) = q74n and with support in (-oo,1 3+ 2n]. Now for
j = 0,..., 12n - 1, let Bj be the B-spline of degree n with knots 1 - 2n + 13,

13 - 2n +•, - 2n + £•_l. Then since Bj is in V,

0 = B ( BJ1 .Fn+1
-00 -- OO

= [0-2n+ j, -3-2n+j3-,..., 3-2n j ] + F.

Thus F vanishes at 13- 2n + 1, j = 0,..., 12n - 1. Now F coincides on
[13-2n, -3+2n] with a spline G of degree 2n+1 with support [)3-3n- ½, 0+-2n]
with knots at

1 1 1 1 1
1 -3n-- ,13-3n,..., 1-,- ,010A+,•)3± ... ,03±+2n-- ,+32n.

2' 2' 4 2' 4
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It then follows from the Schoenberg-Whitney Theorem [5] that G vanishes
identically on [)3 - 2n, / + 2n] and hence so does 774n. So 774n has support in
[/3 - ý-, 0 - 2n] with knots in 12, and so 774n vanishes identically, which is

a contradiction. Thus the linear system is non-singular, which completes the
proof. 0

Finally we note that if 3 is as in Theorem 3 and M is given by (6), then
the basic set for W dual to {¢1, ¢2, 03} is {11, '2, H 3 } given by

00

E:= ckO (- k),

k=-oo

where

00

E Ckzk = (M(z)-l)* = (adj M(z))* = (adj M(z- 1 ))T.
k=-oo
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